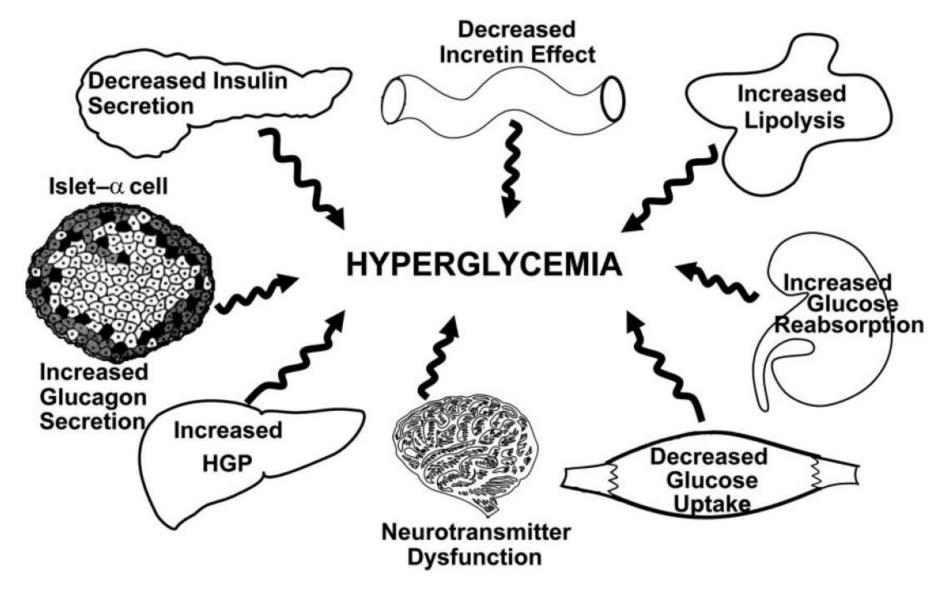
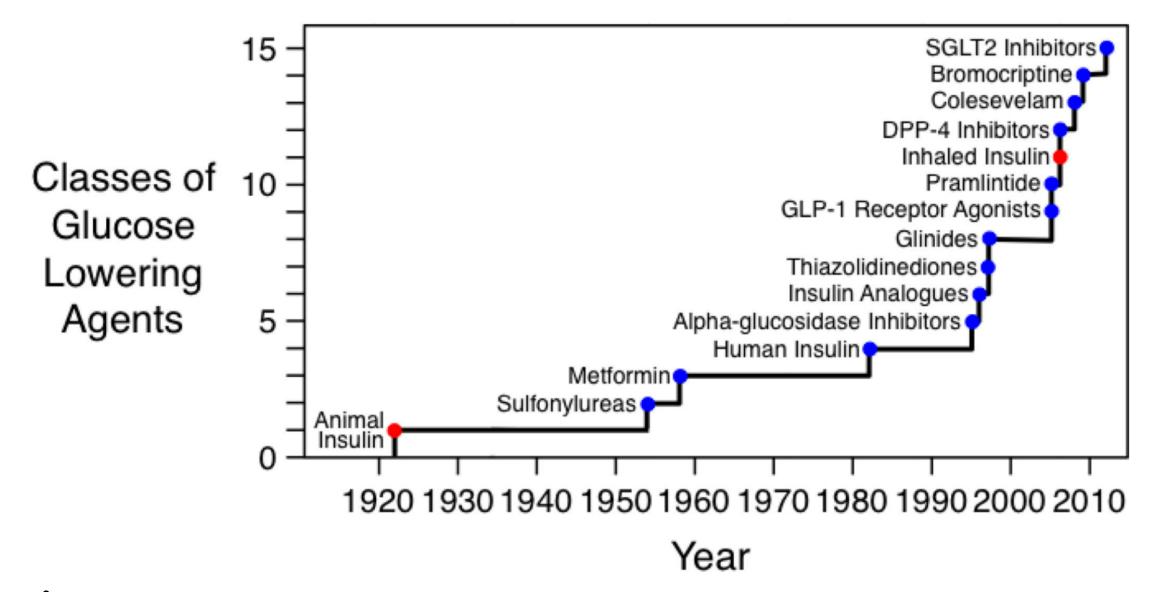
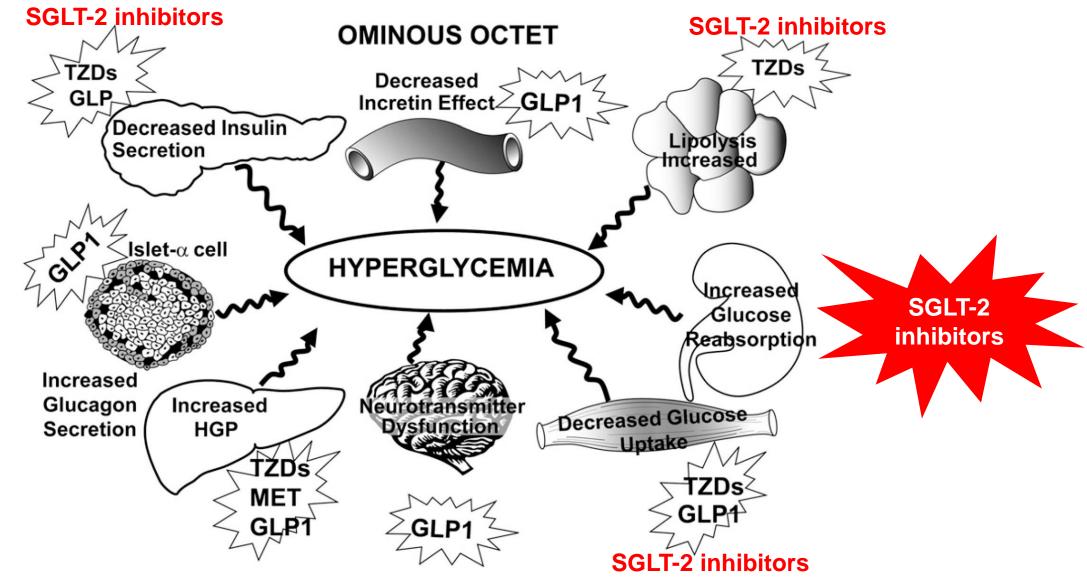
New Evidence of Pharmacology Approaches to Glycemic Treatment: Which SGLT-2i is Better After Metformin (I)

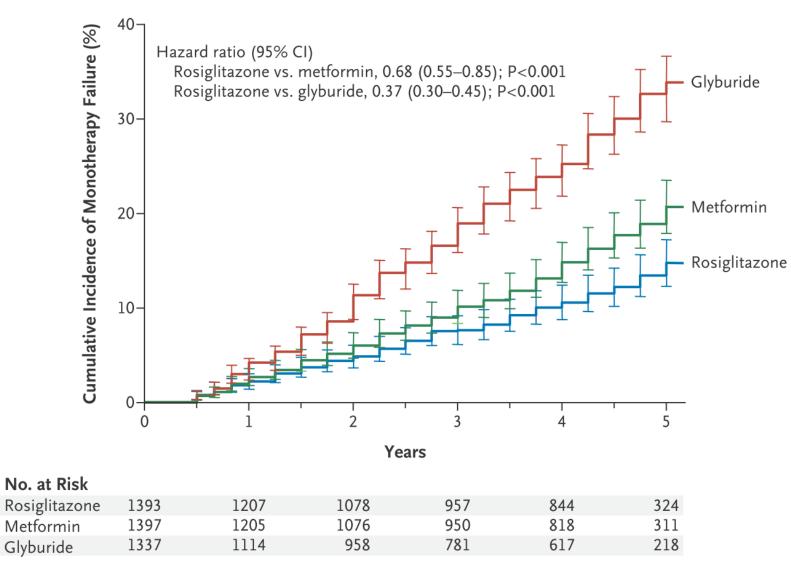

楊宜瑱醫師

臺灣血脂衛教學會


2018/09/09 15:30~16:00


The complex pathophysiology of T2DM

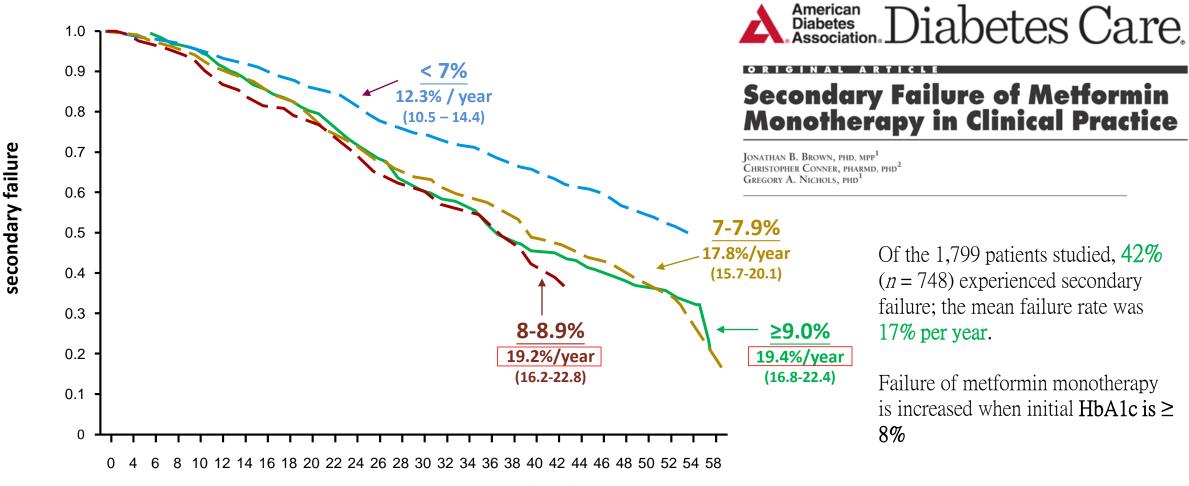
Much more glucose lowering agents in the last decade


The complex pathophysiology of T2DM

Ralph A. DeFronzo et al. Diabetes Care 2013 Aug; 36(Supplement 2): S127-S138.

4

Durability of oral glucose-lowering medications



ADOPT Study: initial treatment for 4360 patients with recently diagnosed type 2 diabetes

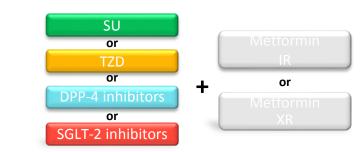
Monotherapy failure at <u>5 years</u>: 15% with rosiglitazone **21% with metformin** 34% with glyburide

Primary outcome: time to monotherapy failure (defined as fasting plasma glucose >180 mg per deciliter) Steven E. Kahn et al. N Engl J Med 2006;355:242743.

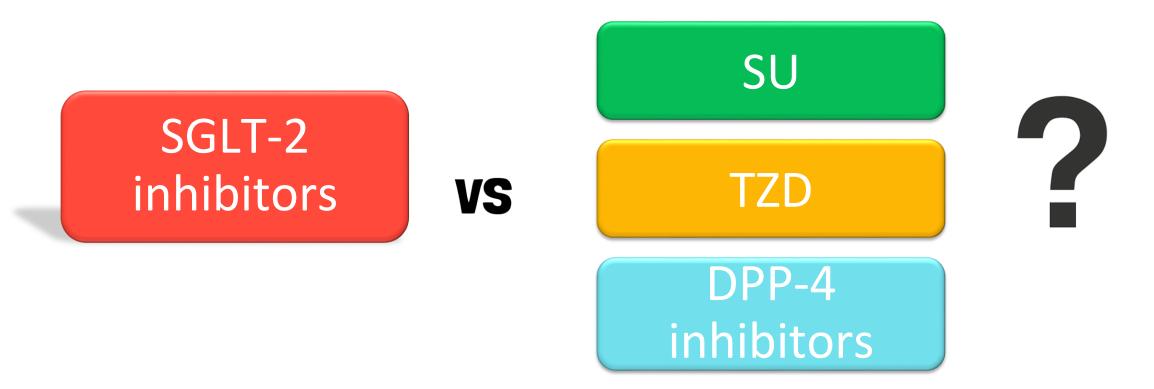
Time to failure of metformin monotherapy

Months on metformin

Secondary failure is defined as a subsequent A1C ≥7.5% or the addition or substitution of another anti-hyperglycemic agent. Diabetes Care 2010 Mar; 33(3): 501-506.

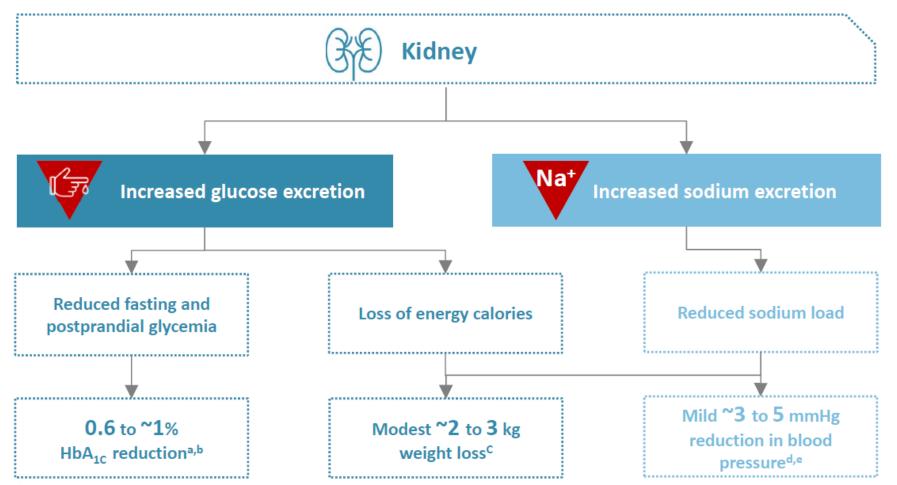

6

Proportion not experiencing


Recommendation of starting dual therapy

Association	Latest version	Circumstance	Consider treatment
ADA	2018	 Entry A1c ≥ 9% A1c target is not achieved after 3-month monotherapy 	Dual combination
AACE/ACE	2018	 Entry A1c ≥ 7.5% A1c target is not achieved after 3- month monotherapy 	Dual Therapy
Canadian Diabetes Association	2016	 Entry A1c > 8.5% A1c target is not achieved after metformin treatment 	Dual combination
NICE (UK)	2017	 If A1c rises to 7.5% after metformin treatment Support the person to aim for an HbA1c level of 7% 	Dual Therapy
中華民國糖尿病學會	2018	 初診斷或已治療,但糖化血色素 ≥ 8.5% 的病人 	使用兩種或多種口 服抗糖尿病藥物

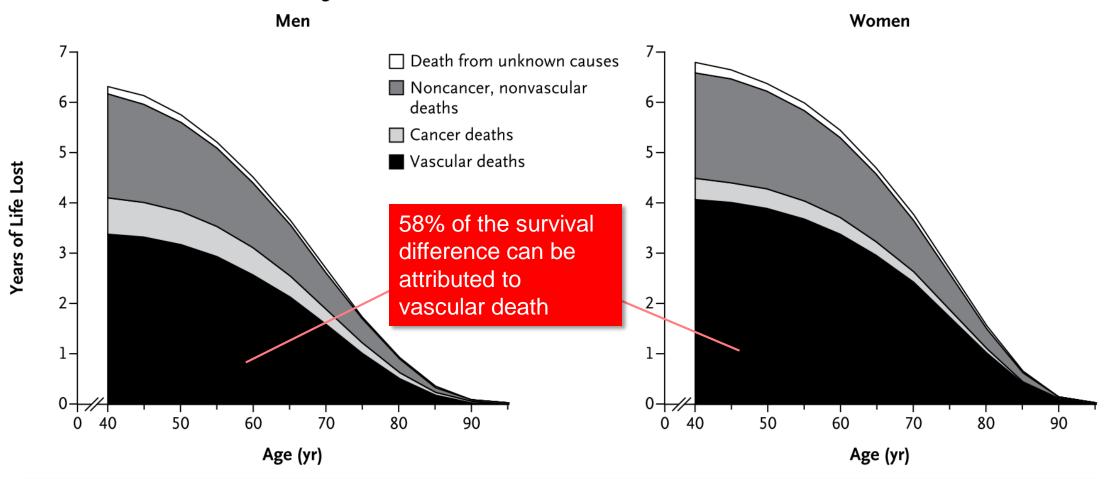
Choices of second-line therapy

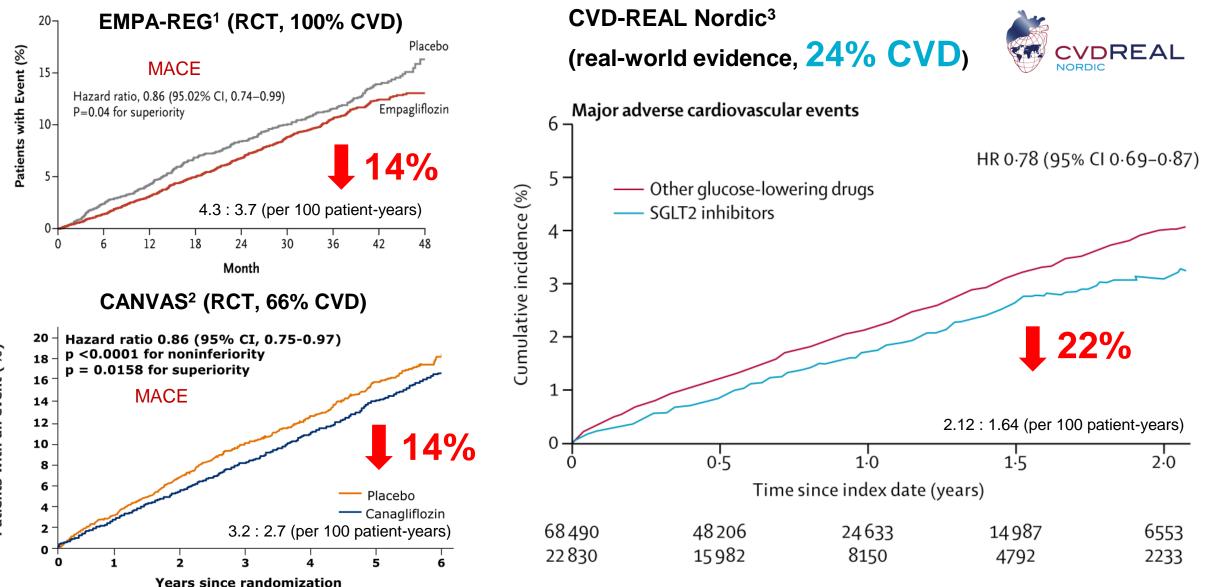


Cardiovascular profile consideration:

Clinical Benefits of SGLT2 Inhibitors

a. Wilding JP, et al. Diabetes Obes Metab. 2014; 16:124-136; b. Forst T, et al. Diabetes Obes Metab. 2014; 16:467-477; c. Valentine V. Clin Diabetes. 2012; 30:151-155; d. Rosenstock J, et al. Diabetes Obes Metab. 2014; 15:1154-1160; e. Goring S, et al. Diabetes Obes Metab. 2014; 16:433-442.

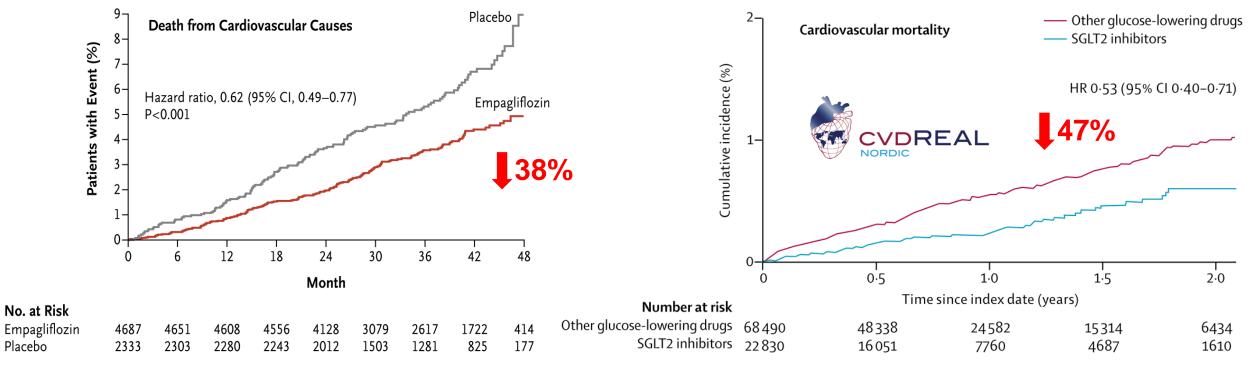

口服抗糖尿病藥的建議與考量


Diabetes is associated with significant loss of life years

Estimated Future Years of Life Lost Owing to Diabetes

At 40, 50, and 60 years of age, men with diabetes would incur about 6.3, 5.8, and 4.5 years of life lost. At 40, 50, and 60 years of age, women with diabetes would incur about 6.8, 6.4, and 5.4 years of life lost

Lower MACE incidence of SGLT2i in both RCT and RWE


1. N Engl J Med 373:2117-28 (2015); 2. N Engl J Med Jun 12 (2017). doi: 10.1056/NEJMoa1611925. 3. Lancet Diabetes Endocrinol. 2017 Sep;5(9):709-717.

12

Lower CV death incidence of SGLT2i in both RCT and RWE

EMPA-REG¹ (100% CVD)

CVD-REAL Nordic² (real-world evidence, 24% CVD)

2.0 vs 1.2 events per 100 patient-years

Placebo

THE LANCET **Diabetes & Endocrinology**

0.53 vs 0.27 events per 100 patient-years

Summary of CV Outcome Trial and Real-world Evidence of SGLT2i

	EMPA-REG ¹	CANVAS program ²	DECLARE ³	CVD-Real ⁴	CVD-Real Nordic ⁵
Medication	Empa	Cana	Dapa	41.8% Dapa 52.7% Cana 5.5% Empa	94% Dapa 1.3% Cana 4.7% Empa
🔒 Study type	RCT	RCT	RCT	RWE	RWE
🐉 Patients	7,020	10,143	17,160	309,056	91,320
😚 History of CVD, %	100	66	40.6	13	25
💼 Follow-up, year	3.1	3.9 (6.0/2.5)	4.5	2012-2016	2012-2015
Primary MACE Outcome, %	-14	-14	-	-	-22
👌 CV Death, %	-38	-13*	-	-	-47
🔗 MI, %	-13*	-15*	-	-	-13*
Stroke, %	24*	-10*			-14*
All-Cause Mortality, %	-31	-13 (no significant)	-	-51 CVD: -53 Non-CVD: -46	-49
Hospitalization for HF, %	-35	-33		-39 CVD: -31 Non-CVD: -55	-30

*No significant

1. Zinman B, et al. N Engl J Med 2015;373:2117–2128; 2. Bruce Neal et al. N Engl J Med. 2017 Jun 12. doi: 10.1056/NEJMoa1611925.; 3. Itamar Raz et al. The 77th Scientific Sessions of the American Diabetes Association, San Diego, California, June 9-13, 2017; 1245-P; 4. Mikhail Kosiborod et al. Circulation July 11, 2017, Volume 136, Issue 2. doi: https://doi.org/10.1161/CIRCULATIONAHA.117.029190; 5. Kåre I Birkeland et al. The 77th Scientific Sessions of the American Diabetes Association, San Diego, California, June 9-13, 2017; 1205-P

27

14

Lower Risk of Cardiovascular Events and Death Associated with Initiation of SGLT-2 Inhibitors versus Other Glucose Lowering Drugs - Real World Data Across Three Major World Regions with More Than 400,000 Patients: The CVD-REAL 2 Study

Mikhail Kosiborod¹, Carolyn Su Ping Lam², Shun Kohsaka³, Dae Jung Kim⁴, Avraham Karasik⁵, Jonathan Shaw⁶, Navdeep Tangri⁷, Su-Yen Goh⁸, Marcus Thuresson⁹, Hungta Chen¹⁰, Filip Surmont¹¹, Niklas Hammar^{12,13}, Peter Fenici¹⁴ on behalf of the CVD-REAL Investigators and Study Group. Presented at the 67th Scientific Sessions of the American College of Cardiology meeting; March 10-12, 2018; Orlando, FL.

¹Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA; ²National Heart Centre, Singapore and SingHealth Duke-NUS, Singapore; ³Keio University School of Medicine, Tokyo, Japan; ⁴Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea; ⁵Tel Aviv University, Ramat Aviv, and Maccabi Healthcare Israel; ⁶Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; ⁷Department of Medicine, University of Manitoba, Winnipeg MB, Canada; ⁸Singapore General Hospital, Singapore; ⁹Statisticon AB, Uppsala, Sweden; ¹⁰AstraZeneca, Gaithersburg, MD, USA; ¹¹AstraZeneca, Luton, UK; ¹²Karolinska Institutet, Stockholm, Sweden; ¹³AstraZeneca, Gothenburg, Sweden; ¹⁴AstraZeneca, Cambridge, UK

> Kosiborod M, Lam CSP, Kohsaka S, et al. Lower Cardiovascular Risk Associated with SGLT-2i in >400,000 Patients: The CVD-REAL 2 Study. J Am Coll Cardiol (in press). DOI: 10.1016/j.jacc.2018.03.009

Countries and Data Sources

Australia – National Diabetes Services Scheme (NDSS)*

Canada – Manitoba Population Health Research Data Repository

Israel – The Maccabi Health Management Organization

Japan – Medical Data Vision

Singapore – SingHealth Diabetes Registry

South Korea – National Health Insurance Service (NHIS)

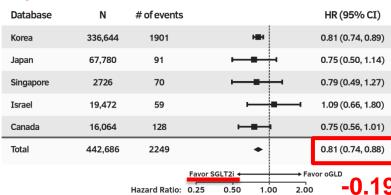
Kosiborod M, Lam CSP, Kohsaka S, et al. Lower Cardiovascular Risk Associated with SGLT-2i in >400,000 Patients: The CVD-REAL 2 Study. J Am Coll Cardiol (in press). DOI: 10.1016/j.jacc.2018.03.009

*Included in the ACD analysis only

Observations from CVD-REAL 2 (real-world evidence, 87% Asian, 26.6% CVD)

All-Cause Death

Database	Ν	# of events			HR (95% CI)
Korea	336,644	3445	-		0.72 (0.67, 0.77)
Japan	67,780	557	H		0.56 (0.47, 0.67)
Singapore	2726	36		-	0.75 (0.38, 1.47)
Israel	19,472	199	⊢ ∎→I		0.41 (0.30, 0.55)
Canada	16,064	261	F-8-1		0.51 (0.41, 0.65)
Australia	27,442	718	H		0.32 (0.27, 0.38)
Total	470,128	5216	-		0.51 (0.37, 0.70)
		Hazard Ratio:	Favor SGLT2i +	→ Fa	avor oGLD 0 -0.49


Hospitalization for Heart Failure . . .

arction		Stro	ke	
		Hazard Ratio:	Favor SGLT2i < 0.25 0.50 1.00	→ Favor oGLD -0.36 2.00
Total	442,686	5997	•	0.64 (0.50, 0.82)
Canada	16,064	88	⊢− ∎−→	0.36 (0.24, 0.56)
Israel	19,472	128	⊢ ∎→1	0.53 (0.37, 0.75)
Singapore	2726	67		0.62 (0.38, 1.02)
Japan	67,780	565	⊢⊞ -1	0.75 (0.63, 0.89)
Korea	336,644	5149		0.87 (0.82, 0.92)
Database	Ν	# of events		HR (95% CI)

Composite of All-Cause Death or HHF

Database	Ν	# of events		HR (95% CI)
Korea	336,644	7990	-	0.81 (0.78, 0.85)
Japan	67,780	1061	HEH	0.65 (0.57, 0.74)
Singapore	2726	93	I8 1	0.62 (0.41, 0.95)
Israel	19,472	313		0.45 (0.36, 0.57)
Canada	16,064	331	H	0.48 (0.39, 0.59)
Total	442,686	9788	-	0.60 (0.47, 0.76)
		Hazard Ratio:		Favor oGLD

Myocardial Infa

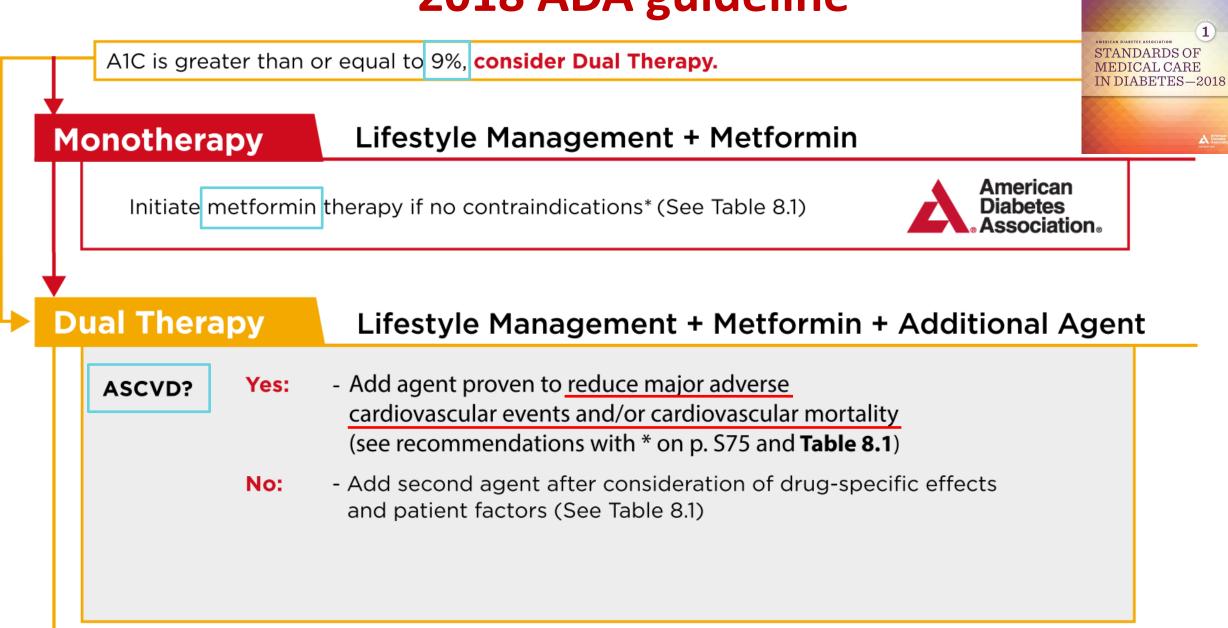
Database	Ν	# of events		HR (95% CI)
Korea	336,644	5972	-	0.82 (0.78, 0.86)
Japan	67,780	272	►-₩- 1	0.66 (0.52, 0.84)
Singapore	2726	34	←∎1	0.34 (0.15, 0.75)
Israel	19,472	116	IB I	0.66 (0.47, 0.94)
Canada	16,064	45	FB4	0.55 (0.32, 0.94)
Total	442,686	6439	-	0.68 (0.55, 0.84)
		Hazard Ratio:	Favor SGLT2i ←	→ Favor oGLD 2.00 -0.32

Are all SGLT2 inhibitors the same?

Label information of marketed (summer 2017) SGLT2 inhibitors, and emerging preclinical and clinical data

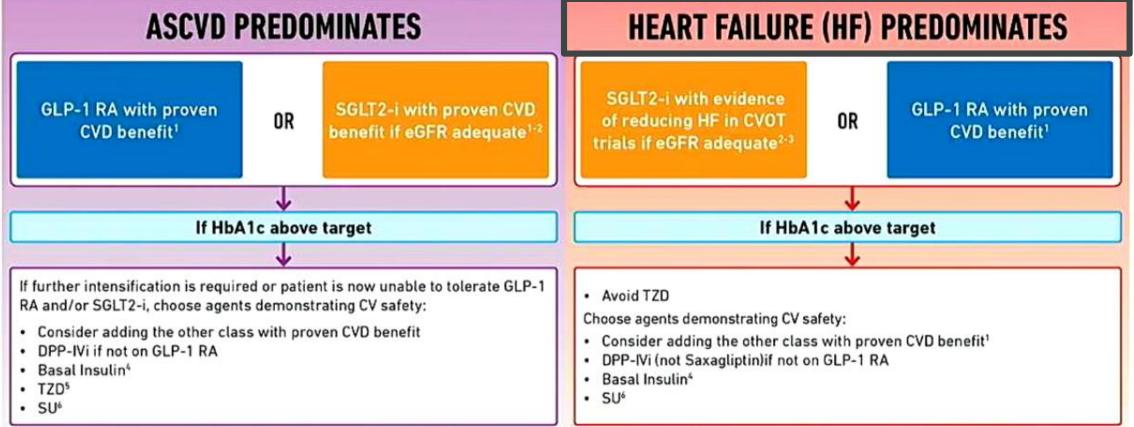
Two operational definitions of "sameness"

Regulatory (FDA) view: Label


- Indications
- Safety and warnings
- Data from registrational trials within each drug (including sponsored RCTs of head to head comparisons)
- Pharmacokinetic and pharmacodynamic analyses of sponsored registrational trials

Clinical & basic science view

- Outcomes
- Adverse events
- Indirect comparisons by payors
- Indication for specific patients (e.g. glucose lowering v.s. hard outcomes)
- Preclinical and clinical data not reflected in the label


2018 ADA guideline

Diabetes Care

Step 1: Assess cardiovascular disease

Presence of cardiovascular disease is compelling indication

1. SGLT2-i = Empagliflozin preferred, GLP1-RA = Liraglutide preferred. Proven CVD benefit means it has label indication of reducing CVD events please see hierarchy of evidence in manuscript for CVD benefits for agents within the GLP-1 RA and SGLT2-i class, 2. Be aware that SGLT2-i vary by region and individual agent with regard to indicated level of eGFR for initiation and continued use. 3. Both Empagliflozin and Canaeliflozin have shown reduction in HF in CVOT trials, 4. Degludec or U100 Glargine have demonstrated CVD safety, 5. Low dosi American Diabetes Association, 78th Scientific Sessions, Orlando, FL, June 22-28, 2018. Session: Management of hypoglycaemia in Type 2 Diabetes—Draft ADA/EASD Consensus Report 2018. Access from:

American Diabetes Association.

https://professional.diabetes.org/2018EASDconsensus Copyright ADA 2018

Caveats and Questions

No evidence of CVD benefit in those at lower cardiovascular risk

The combination of SGLT2-i and GLP-1 RA has not been tested in cardiovascular outcome trials

GLP-1 RA with proven CVD benefit¹ OR SGLT2-i with proven CVD benefit¹ if eGFR adequate² If HbA1c above target If further intensification is required or patient is unable to tolerate GLP-1 RA and/or SGLT2-i, choose agents demonstrating CV safety: Consider adding the other class with proven CVD benefit¹ DPP-IVi if not on GLP-1 RA Basal Insulin⁵ TZD⁶ • SU7

1. SGLT2-i = Empagliflozin preferred, GLP1-RA = Liraglutide preferred. Proven CVD benefit means it has label indication of reducing CVD events please see manuscript to see

hierarchy of evidence for CVD benefits for agents within the GLP-1 RA and SGLT2-i clas level of eGFR for initiation and continued use, 5. Degludec or U100 Glargine have dem CVD effects, 7. Choose later generation SU with lower risk of risk of hypoglycaemia

American Diabetes Association, 78th Scientific Sessions, Orlando, FL, June 22-28, 2018. Session: Management of Hyperglycemia in Type 2 Diabetes—Draft ADA/EASD Consensus Report 2018. Access from: https://professional.diabetes.org/2018EASDconsensu

American Diabetes Association.

Copyright ADA 2018

ARTICLE IN PRESS

+ MODEL

Available online at www.sciencedirect.com

Journal of the Chinese Medical Association xx (2018) 1–34

www.jcma-online.com

Guidelines

2018 consensus of the Taiwan Society of Cardiology and the Diabetes Association of Republic of China (Taiwan) on the pharmacological management of patients with type 2 diabetes and cardiovascular diseases

2018 TSOC and DAROC consensus

Treatment algorithm in diabetic patients with hypertension.

-				
Target HbA1c	<7%			
Monotherapy	Metformin			
Dual therapy	Metformin + SGLT-2 i			
Triple therapy	Metformin + SGLT-2 i	Metformin + SGLT-2 i	Metformin + SGLT-2 i	Metformin + SGLT-2 i
	+ GLP-1 RA ^a	$+ TZD^{b}$	+ DPP-4 i	+ SU or Glinide or AGI
Insulin therapy	Basal insulin or premixed insulin	or basal bolus insulin, plus oral ager	nts	
Treatment algorithm Target HbA1c	in diabetic patients with CHD.			
Monotherapy	Metformin			
Dual therapy	$Metformin + TZD^{a}$	Metformin + SGLT-2 i	Metform	$in + GLP-1 RA^{b}$
Triple therapy	Metformin + TZD ^a + SGLT-2 i	Metformin + TZD ^a + GI	LP-1 RAs ^b Metform	in + SGLT-2 i + GLP-1 RAs ^b
Insulin therapy	Basal insulin or premixed insulin	or basal bolus insulin, plus oral ager	nts	

Treatment algorithm in diabetic patients with heart failure.

Target HbA1c	<8%			
Monotherapy	SGLT-2 i or metformin			
Dual therapy	SGLT-2 i + metformin			
Triple therapy	SGLT-2 i + metformin	SGLT-2 $i + metformin$	SGLT-2 i + metformin	SGLT-2 i + metformin
	+ GLP-1 RA	+ DPP-4 i (except saxa., alo., and vilda.)	+ SU or AGI	+ Glinide
Insulin therapy	Basal insulin or premixed in	nsulin or basal bolus insulin, plus oral agents		

鈉-葡萄糖共同輸送器-2 抑制劑 (SGLT-2 inhibitors)

Pharmacological Properties of SGLT2 Inhibitors Fach drug in the

Each drug in the class as different from the others

	Empagliflozin	Dapagliflozin	Canagliflozin		
Therapeutic dose (mg/day) Starting dose	<u>10-25</u> 10	5-10	<u>100-300</u> 100		
Administration	QD With or without food	QD With or without food	QD Before the first meal of the day		
Peak plasma concentration (hours post-dose)	1.5	Within 2	1–2		
Absorption (mean oral bioavailability)	≥ 60%	~ 78%	~ 65%		
Metabolism	Primarily glucuronidation, No active metabolite				
Elimination (half-life, hours)	Hepatic:renal 44:56 [12.4]	Hepatic:renal 22:78 [12.9]	Hepatic:renal 67:33 [13.1]*		
Selectivity over SGLT1	1:5000	> 1:1400	> 1:1601		
Glucose excretion with higher dose (g/day)	78 (25 mg dose)	~ 70 (5 or 10mg dose)	87 (100mg dose)		

SGLT, sodium glucose cotransporter; QD, once daily.;*For the 300 mg dose.

SGLT-2 inhibitors dosage adjustments based on renal function Each drug in the class as different from the others

TABLE 2. SGLT2 INHIBITOR DOSAGE ADJUSTMENTS BASED ON RENAL FUNCTION

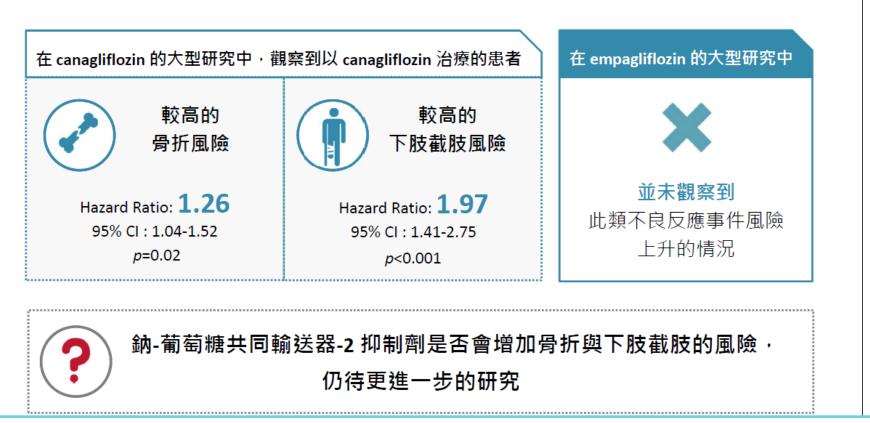
eGFR mL/min/1.73 m²	Canagliflozin	Dapagliflozin	Empagliflozin
≥60	No dosage adjustment 100-300 mg/day	No dosage adjustment 5-10 mg/day	No dosage adjustment 10-25 mg/day
45-60	100 mg daily	Not recommended eGFR <60	No dosage adjustment 10-25 mg/day
30-45	Not recommended eGFR <45	N/A	Not recommended eGFR <45
<30	Contraindicated	Contraindicated	Contraindicated

eGFR - estimated glomerular filtration rate; SGLT2 - sodium-glucose cotransporter-2.

Which SGLT-2 inhibitor to use ?

Efficacy comparison* as monotherapy compared to placebo in 24 weeks trial

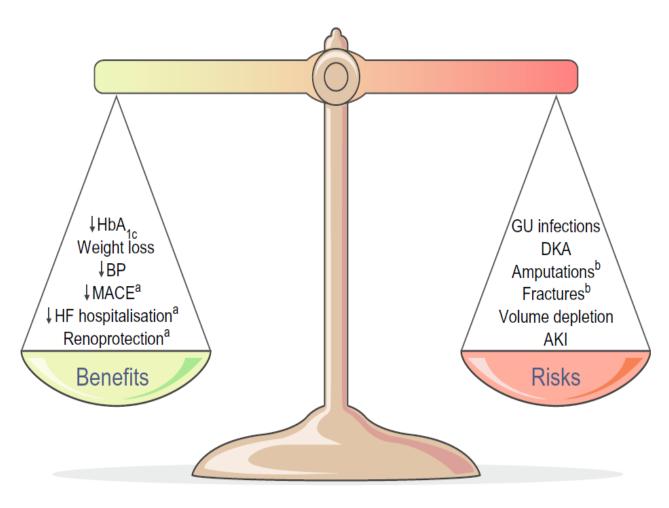
	Empagliflozin (10mg,25mg)	Dapagliflozin (5mg,10mg)	Canagliflozin (100mg,300mg)
HbA1C reduction (%)	0.7-0.9	0.5-0.7	0.91-1.16
FPG reduction (mg/dL)	31-36	19.9-24.7	36-43
Weight Loss (in Kg)	2.5-2.8	2.8-3.2	2.2-3.3
SBP reduction (mmHg)	2.6-3.4	2.3-3.6	3.7-5.4


Each drug in the class as different from the others

Note: comparison in individual trials and not in head to head clinical trials

鈉-葡萄糖共同輸送器-2 抑制劑 (SGLT-2 inhibitors) Each drug in t

Each drug in the class as different from the others


A meta-analysis of trials evaluating combined safety outcomes of canagliflozin, dapagliflozin and empagliflozin did not support a harmful effect of SGLT2 inhibitors on bone. The fracture event rate was 1.59% in the SGLT2 inhibitor group and 1.56% in the control group. Moreover, the incidence of fracture events was similar among the three SGLT2 inhibitors.

Weighting risk and benefits

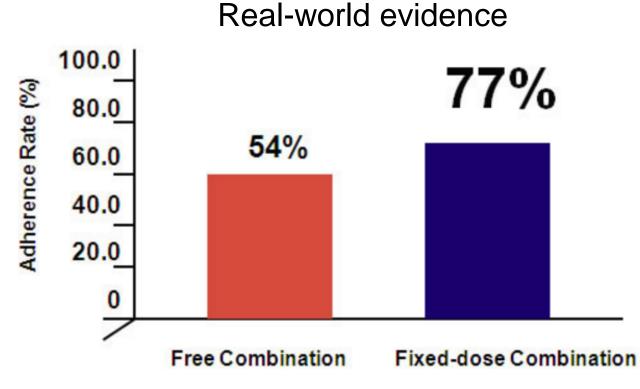
•There are no published head-to-head trials comparing empagliflozin, dapagliflozin with canagliflozin, so we can't directly compare the three agents.

Amputation/fracture → CANA ?
AKI → DAPA/CANA ?
An analysis of SGLT2 users and nonusers: no differences

Trend in stroke → EMPA-REG ?
 ⇒ trend for cardiovascular mortality was similar in individuals with and without a history of stroke at baseline

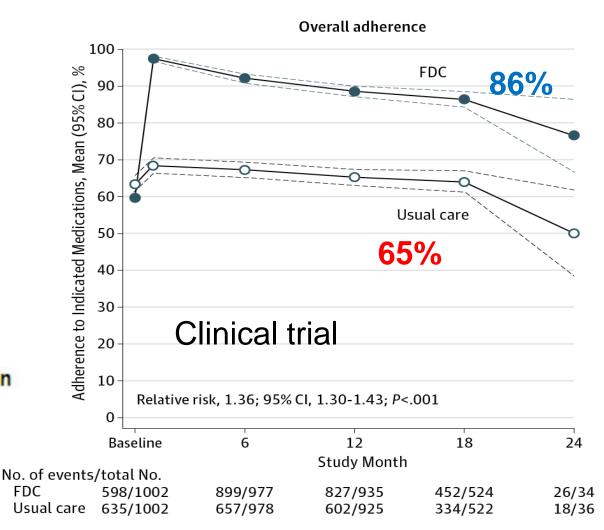
When a second drug is going to be added...

Free combination vs


Fixed-dose combination

Jardiance-Duo (12.5/850 mg) Xig-Duo (10/1000 mg)

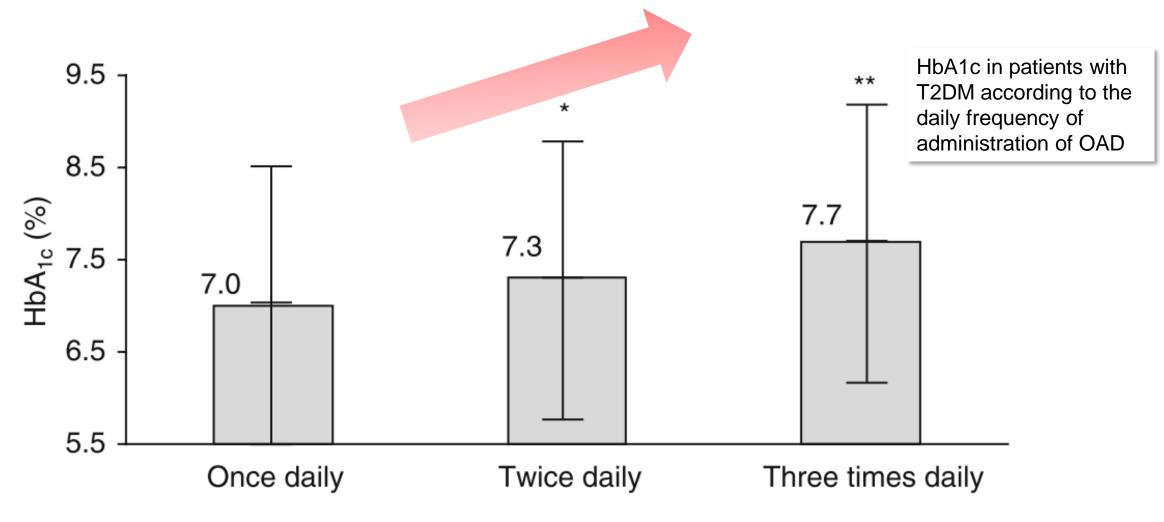
TW-4292_XIG_28/03/2018


7

Fixed-dose combinations (FDC) improve adherence

Retrospective analysis, 6502 patients, glyburide/metformin, 180 days¹ The adherence rate was defined as the sum of the days' supply of oral antidiabetic medication obtained by the patient during the follow-up period divided by the total number of days in the designated follow-up period

31 2. Simon Thom et al. JAMA. 2013;310(9):918-929. doi:10.1001

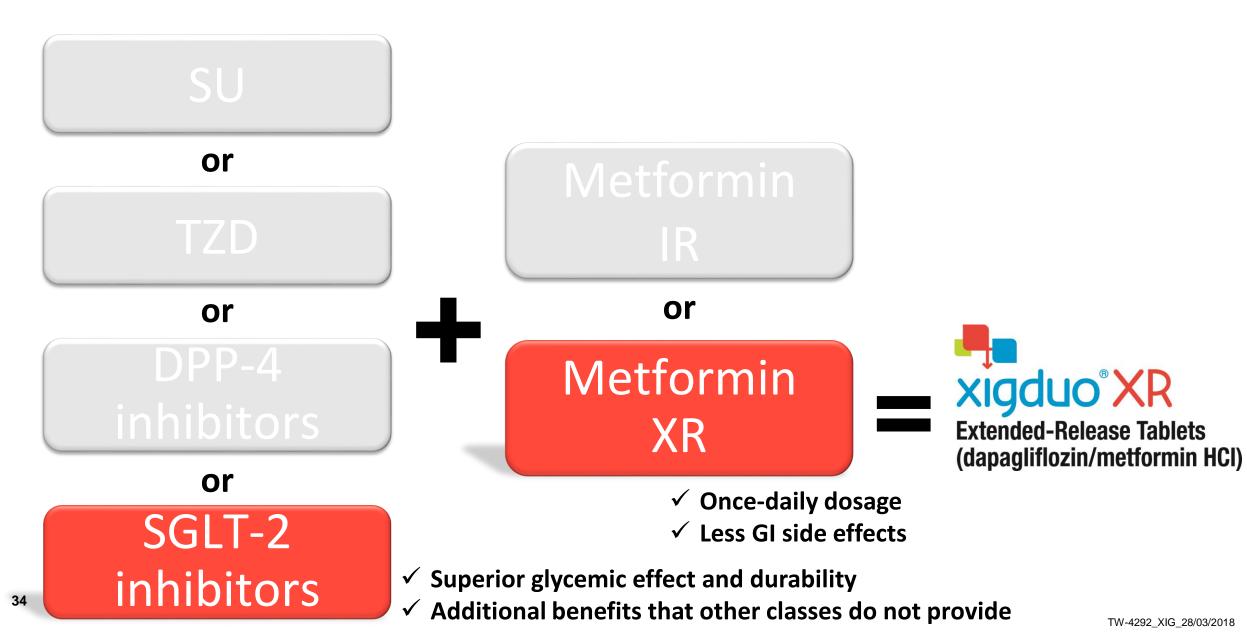

Randomized, open-label trial, 2004 patients with established CVD or at risk of CVD, aspirin/simvastatin/lisinopril/ hydrochlorothiazide, 15 months² *P<0.001

^{1.} Melikian C et al. Clin Ther. 2002 Mar;24(3):460-7

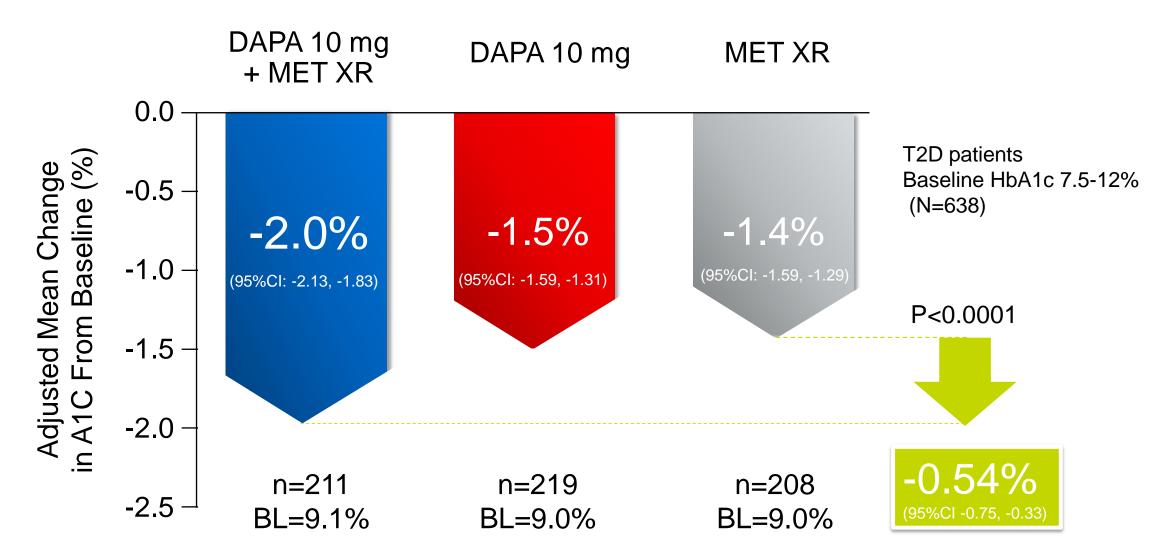
After reducing number of pills,

Frequency of daily doses of OAD and HbA1c

* p < 0.05, ** p < 0.01 vs once-daily administration


Prospective assessment of self-reported compliance with a standardized questionnaire in an cohort of 11,896 T2DM patients

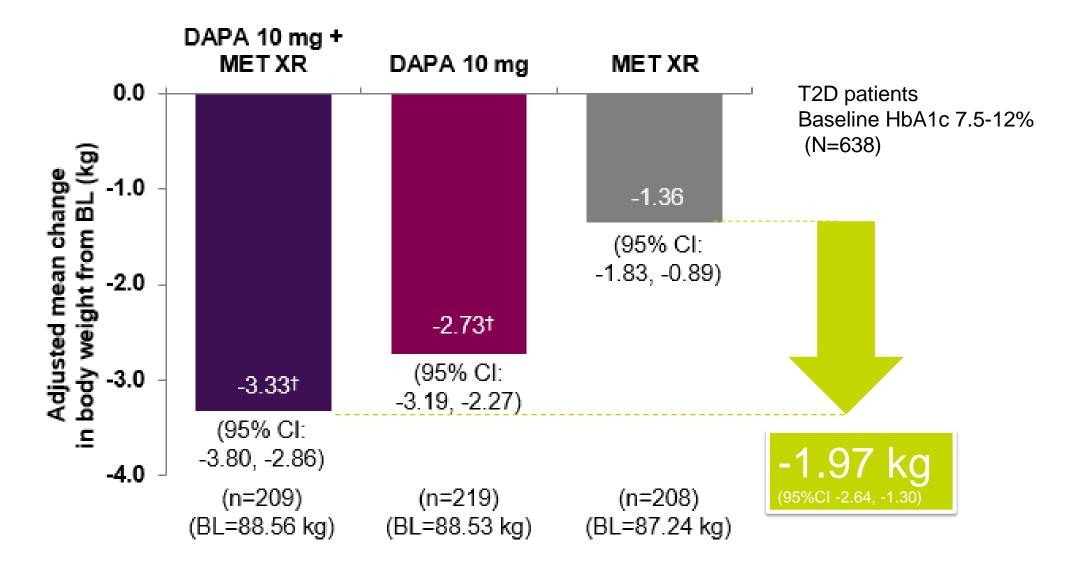
OAD: oral antidiabetic drug


33

1. Guillausseau PJ et al. Treat Endocrinol. 2005;4(3):167-75. 2. Diabetes Metab. 2003 Feb;29(1):79-81.

Which class? What kind of metformin?

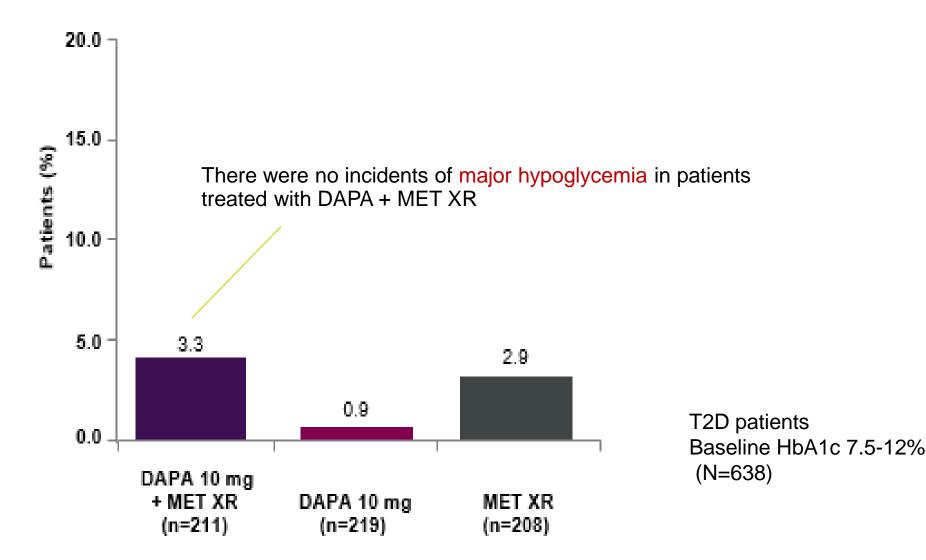
HbA1c reduction of 2% at week 24


Mean metformin XR doses for combination and metformin groups were 1928.6 mg and 1949.7 mg

DAPA: Dapagliflozin, MET XR: metformin XR, XR: extended release; BL: mean baseline

Henry RR, et al. Int J Clin Pract 2012;66(5):446–456.

35


Weight loss of 3.3 kg at week 24

Dapagliflozin is not indicated for the management of weight loss.

36 Mean metformin XR doses for combination and metformin groups were 1928.6 mg and 1949.7 mg Henry RR, et al. Int J Clin Pract 2012;66(5):446–456.

Hypoglycemia incidence at week 24

Mean metformin XR doses for combination and metformin groups were 1928.6 mg and 1949.7 mg Henry RR, et al. Int J Clin Pract 2012;66(5):446–456.

37

Take home message

- Diabetes: complex management
- Monotherapy fails...combination therapy can be started with A1c of 8.5%
- SGLT-2i (RCT and RWD) CV protection (MACE/heart failure), considered as priority use in those with high risk for CAD (low risk: DECLARE)
- Which SGLT-2i? No direct hear-to head study comparing efficacy or safety
- The viewpoint of physician using them to treat diabetes (cardiorenal events) in a safe manner.
- SLGT-2 inhibitors are appropriate for patients who are at risk of hypoglycemia, overweight, or with CVD.
- Wait for more data: CKD study, heart failure study, more safety data (fractures, amputations...)

Affiliated Hospital

CONTRACT MON

THE R. P. LEWIS CO., LANSING, MICH.

