Choice Among Antiplatelets – An Review of Antiplatelet Agents

2014 01 26 新光醫院心臟內科 邱俊仁 醫師 Chiung-Zuan Chiu, M. D., Ph. D. Division of Cardiology Shin Kong Wu Ho-Su Memorial Hospital

Since the introduction of new therapies and management strategies in ACS, morbidity and mortality have decreased, but there is room for improvement

CCU, coronary care unit; CABG, coronary bypass graft

Trans Am Clin Climatol Assoc. 2006;116:41-53 Anesth Analg. 2008;107:552-69 Lancet. 1994;344:1383-1389 N Engl J Med. 1998:339:1665-1671

Antiplatelet Agents

- Thromboxane A2 inhibitor Acetylsalicylic acid (ASA)
- Phosphodiesterase inhibitor Dipyridamole, Cilostazol
- Glycoprotein (GP) IIb/IIIa blockers Parenteral: abciximab, eptifibatide, tirofiban

ADP-receptor antagonists Clopidogrel , Prasugrel, Ticagrelor, Ticlopidine

Mechanisms of Action of Oral Antiplatelet Therapies

ADP = adenosine diphosphate, TXA₂ = thromboxane A₂, COX = cyclooxygenase.

CURE - Unstable Angina/NSTEMI

Primary End Point - MI/Stroke/CV Death

* In combination with standard therapy

The CURE Trial Investigators. N Engl J Med. 2001;345:494-502.

PCI-CURE Early and Long-term Clopidogrel in PCI Patients with ACS

Composite of MI or cardiovascular death from randomization to end of follow-up

Mehta SR et al. Lancet 2001; 358(9281):527-33.

Clopidogrel reduced the composite of death, MI or stroke by 9%

CCS-2

commi

STEM

Chen Z et al. Lancet 2006;366:1607-1621

Postprocedural Antiplatelet Therapy

After PCI, aspirin should be continued *indefinitely*.

The duration of P2Y₁₂ inhibitor therapy after stent implantation should generally be as follows:

- a) In patients receiving a stent (BMS or DES) during PCI <u>for ACS</u>, P2Y₁₂ inhibitor therapy should be given for <u>at least 12 months</u> (clopidogrel 75 mg daily); prasugrel 10 mg daily; and ticagrelor 90 mg twice daily.
- b) In patients receiving a <u>DES for a non-ACS indication</u>, clopidogrel 75 mg daily should be given for <u>at least 12 months</u> if patients are not at high risk of bleeding.
- c) In patients receiving a <u>BMS for a non-ACS indication</u>, clopidogrel should be given for a <u>minimum of 1 month and</u> <u>ideally up to 12 months</u> (unless the patient is at increased risk of bleeding; then it should be given for a minimum of 2 weeks).

Guidelines Recommendations on Antiplatelets

Clopidogrel: unless excessive risk of bleeding ASA: unless excessive risk of bleeding or allergy

Treatment Strategies for ACS Patients: High-dose Clopidogrel

Oasis 7- 597 centres/39 countries/25086 pts

PCI: Percutaneous coronary intervention

UA/NSTEMI: Unstable angina/non-ST-segment elevation myocardial infarction STEMI: ST-segment elevation myocardial infarction

1. Mehta SR et al. Am Heart J 2008;156:1080-1088e1

Clopidogrel dose comparison: cumulative hazards for 1° efficacy outcome at 30 days in <u>PCI cohort¹</u>

Mehta SR, et al. Lancet 2010;376:1233-43.

1. Mehta SR et al. Lancet 2010;376: published online 1 September 2010. DOI: 10.1016/ S0140-6736(10)61088-4

Clopidogrel dose comparison: <u>definite stent thrombosis in</u> <u>PCI cohort¹</u>

1. Mehta SR et al. Lancet 2010;376: published online 1 September 2010. DOI: 10.1016/ S0140-6736(10)61088-4

For internal use only

Clopidogrel dose comparison: <u>bleeding outcomes in</u> <u>PCI cohort¹</u>

Bleeding category	Clopidog	grel dose	Hazard ratio	P value	
	Double N = 8560, n (%)	Standard N = 8703, n (%)	(95% CI)		
CURRENT major	139 (1.6)	99 (1.1)	1.41 (1.09–1.83)	0.009	
CURRENT severe	96 (1.1)	72 (0.8)	1.34 (0.99–1.82)	0.060	
TIMI major	81 (1.0)	60 (0.7)	1.36 (0.97–1.90)	0.074	
Fatal	6 (0.07)	13 (0.2)	0.46 (0.18–1.22)	0.12	
Intracranial	3 (0.04)	4 (0.05)	0.77 (0.17–3.43)	0.73	
Red-cell transfusion ≥ 2 U	109 (1.3)	77 (0.9)	1.42 (1.06–1.91)	<u>0.019</u>	
CABG-related	10 (0.1)	6 (0.07)	1.70 (0.62–4.69)	0.30	
Haemoglobin drop ≥ 50 g/l	47 (0.6)	30 (0.3)	1.60 (1.01–2.53)	<u>0.045</u>	
Minor	435 (5.1)	368 (4.3)	1.23 (1.07–1.41)	<u>0.004</u>	

1. Mehta SR et al. Lancet 2010;376: published online 1 September 2010. DOI: 10.1016/ S0140-6736(10)61088-4

For internal use only

High-dose clopidogrel reduced the rate of the stent thrombosis in ACS patients undergoing PCI

CURRENT-OASIS-7 study

Definite stent thrombosis in patients receiving a DES

Definite stent thrombosis in patients receiving a **BMS**

DES: drug-eluting stent; BMS: bare-metal stent.

High-dose clopidogrel reduced the relative risk of MACE

Meta-analysis

. Major adverse cardiovascular events

Clopidogrel 600		Clopidogrel 600mg LD Clopidogrel 300mg LD Peto Odds I		Peto Odds Ratio	Peto Oc	dds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% Cl	I Peto, Fixe	ed, 95% Cl
Patti 2005	5	126	15	129	1.5%	0.35 [0.14, 0.87]	n — - —	
Cuisset 2006	7	146	18	146	1.9%	0.38 [0.17, 0.87]	n — —	
Montalescot 2006	2	34	4	35	0.5%	0.50 [0.10, 2.65]		
Bonello 2008	91	3146	50	959	8.0%	0.50 [0.33, 0.74]	ı —	
Abuzahra 2008	8	77	10	42	1.2%	0.35 [0.12, 1.01]]	1
Jung 2008	1	73	11	98	0.9%	0.22 [0.07, 0.73]]	
HORIZONS-AMI	93	2158	81	1153	12.3%	0.58 [0.42, 0.80]]	
CURRENT-OASIS 7 (PCI)	330	8560	392	8560	56.9%	0.84 [0.72, 0.97]	j -	-
Choi 2011	92	1217	111	1447	15.3%	0.98 [0.74, 1.31]] –	+
ARMYDA-6MI	6	103	15	98	1.6%	0.36 (0.15, 0.90)	n <u> </u>	
Total (95% CI)		15640	le	12667	100.0%	0.74 [0.66, 0.82]	1 🔶	
Total events	635		707					
Heterogeneity. Chi# = 25.99	, df = 9 (P = 0.002	2); I ² = 65%	6					
Test for overall effect: Z = 5.	34 (P < 0.00001)	55.0 NOR09 					Favours Clopidogrel 600mg	Favours Clipidogrel 300mg

High-dose clopidogrel did not alter the relative risk of major bleeding

Systematic review

. TIMI-defined major	bleeding						
-	Clopidogrel 600	mg LD	Clopidogrel 30	OmgLD		Peto Odds Ratio	Peto Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% Cl	Peto, Fixed, 95% Cl
Patti 2005	0	126	0	129		Not estimable	
Bonello 2008	24	3146	13	959	8.8%	0.52 [0.24, 1.11]	
Abuzahra 2008	77	1	42	1		Not estimable	
Jung 2008	2	73	1	98	1.0%	2.70 [0.27, 26.92]	
HORIZONS-AMI	78	2158	53	1153	38.2%	0.77 [0.54, 1.11]	
Di Sciascio 2010	0	252	0	251		Not estimable	
CURRENT-OASIS 7 (PCI)	81	8560	72	8703	50.7%	1.15 [0.83, 1.57]	
ARMYDA-6MI	2	103	2	98	1.3%	0.95 [0.13, 6.85]	
Total (95% CI)		14419		11392	100.0%	0.92 [0.74, 1.16]	+
Total events	264		183				
Heterogeneity: Chi ² = 5.74,	df = 4 (P = 0.22);	= 30%					
Test for overall effect: Z = 0.	69 (P = 0.49)						Increased bleeding C600mg Increased bleeding C300mg

Current smokers benefit greater in highdose clopidogrel regimen

		2N	Event (%)	HR (95% CI)	Clopic	logrel dose com	parison
CURRENT-			Double dose	Standard dose		р		p for interaction
OASIS-7 study	D							
	Prerandomisat	ion clopic	dogrel					
	NO	13769	268 (3.9)	304 (4.4)	0.90 (0.76-1.06)	0.210		
	<300	2886	57 (4-0)	/3(5.1)	0.79 (0.55-1.12)	0.180	- +	0.456
	≥300 Weisht (Olus	608	5(1.7)	15 (4.8)	0.34 (0.12-0.94)	0.038		0.156
	weight < 60 kg	orage≥/	'5 years or p	142 (7 E)	ONC (0 74 1 21)	0 653		
	res	3/00	125(0.7)	143 (7.5)	0.95 (0.74-1.21)	0.052		0.614
	Smoking status	1349/	205(3.1)	249(3.7)	0.01(0.07-0.90)	0.029	ר 🗖	0.014
	Yes	, 6394	82 (2.6)	122 (3.8)	0.67 (0.51-0.89)	0.006		
	No	10862	245 (4.6)	269 (4.9)	0.94 (0.79-1.12)	0.523		0.040
	Prerandomisat	ion prote	on-pump in	hibitor				-
	Yes	2180	39 (3.6)	62 (5.7)	0.66 (0.44-0.99)	0.046		
	no	11085	199 (3.6)	243 (4·3)	0.82 (0.67–0.99)	0.035		0.215
	Ethnic origin							
	South Asian	1570	41 (5·3)	33 (4.1)	1.40 (0.87–2.25)	0.163	+-	_
	East Asian	2363	43 (3.6)	53 (4·5)	0.81 (0.54–1.21)	0.310		
	Black African	121	4 (6·9)	6 (9.5)	0.68 (0.19–2.43)	0.553		
	European	10983	199 (3.6)	254 (4.6)	0.78 (0.65–0.94)	0.010		
	Other	2226	43 (4.0)	46 (4.0)	1.04 (0.69–1.59)	0.842		0.339
	Glycoprotein III	b/IIIa inhi	ibitor postra	andomisati	on			
	Yes	4932	116 (4.7)	147 (5·9)	0.79 (0.62–1.01)	0.060		
	No	12324	214 (3.5)	245 (3·9)	0.89 (0.74–1.07)	0.225		0-447
	Proton-pump i	nhibitor	postrandon	hisation				
	Yes	5574	117 (4.2)	158 (5.7)	0.74 (0.58–0.94)	0.014	J -■	
	No	7691	121 (3-2)	147 (3.8)	0.84 (0.66–1.07)	0.153	-=	0.433
							0.25 0.5 1	24
							HR (95% (CI)
Mehta SR, et al. Lancet 2010	;376:1233-43.					Do	uble dose Str	andard dose

MADONNA study: Stent thrombosis and ACS occurred less in guided-treatment group

Event rates in the guided and control groups during 1-month follow-up.

Event n (%)	Guided group $n = 403$	Non-guided group $n = 395$	р
Stent thrombosis (definite and probable)	1 (0.2)	7 (1.9)	0.027
Acute coronary syndrome	0 (0)	10 (2.5)	0.001
Cardiovascular death TIMI major bleeding	8 (2) 4 (1)	5 (1.3) 1 (0.3)	0.422 0.186

**Guided group: clopidogrel non-responders received repeated loading doses of clopidogrel or prasugrel.

Non-guided group: clopidogrel non-responders did not undergo any change in treatment.

Characteristics of Current Antiplatelet Drugs

Sites of action of antiplatelet drugs

Characteristics of clopidogrel

 Clopidogrel requires a <u>two-step bioactivation by liver cell</u>, which irreversibly binds to P2Y12 receptor, thus inhibiting platelet activation.

Genetic polymorphisms may contribute to clopidogrel response variability

Clopidogrel has major limitation in terms of CYP2C19 genetic polymorphism

CYP2C19表現型和基因型頻率						
	Asian (n= 573)	Caucasian (n= 1356)				
Slow meta: CYP2C19*2/*2, *2/*3 or *3/*3	14%	2%				
Moderate meta: CYP2C19*1/*2 or *1/*3	50%	26%				
Rapid meta: CYP2C19*1/*1	38%	74%				

WARNING: DIMINISHED EFFECTIVENESS IN POOR METABOLIZERS

•Poor metabolizers treated with Plavix at recommended doses exhibit higher cardiovascular event rates following ACS or PCI than patients with normal CYP₂C₁₉ function.

•Consider alternative treatment or treatment strategies in patients as CYP2C19 poor metabolizers.

. 保栓通衛生署核准仿單

Highlights of prescribing information, PLAVIX

CYP₂C₁₉ genotype, clopidogrel metabolism, platelet function, and Cardiovascular events: a systematic review and meta-analysis. <u>Holmes MV</u>, et al. . JAMA 2011;306:2704-14

32 studies/<u>42,016</u> patients/3545 CVD events/579 stent thromboses/1413 bleeding events. Six studies were randomized trials

In treatment-only analysis, individuals with 1 or more CYP₂C₁₉ alleles had 1) lower risk of bleeding (relative risk [RR], 0.84; 95% CI, 0.75-0.94), 2) higher risk of CVD events (RR, 1.18; 95% CI, 1.09-1.28).

When analyses were restricted to <u>studies with 200 or more events</u>, <u>the point</u> <u>estimate was insignificant (RR, 0.97; 95% CI, 0.86-1.09)</u>. <u>In randomized trials</u>, CYP₂C₁₉ genotype <u>was not associated with modification</u> <u>of the effect of clopidogrel on CVD end points or bleeding (P > .05)</u>.

CONCLUSION:

Although there was an association between the CYP₂C₁₉ genotype and clopidogrel responsiveness, **overall there was no significant association of genotype with cardiovascular events.**

TRITON Study Design

NEJM 2007; 357: 2001-2005

TRITON-TIMI 38

NEJM 2007; 357: 2001-2005

Primary Endpoint

Efficacy %	Prasugrel n = 6813	Clopidogrel n = 6795	Hazard ratio (95% CI)	<i>P</i> value
Death from CV causes, nonfatal MI, nonfatal stoke	9.9	12.1	0.81 (0.73-0.90)	<.001
Safety %	Prasugrel n = 6741	Clopidogrel n = 6716	Hazard ratio (95% CI)	<i>P</i> value
Non-CABG-related TIMI major bleeding	2.4	1.8	1.32 (1.03-1.68)	.03

Higher risks in pts with 1) prior CVA or TIA 2) age > 75 y/o 3) BW < 60 kg

NEJM 2007; 357: 2001-2005

TRITON-TIMI 38 -safety results-

Endpoint	Prasugrel(%)	Clopidogrel(%)	P value
Non-CABG- related TIMI major bleed	2.4	1.8	0.03
Life-threatening bleed	1.4	0.9	0.01
Fatal bleed	0.4	0.1	0.002
Major or minor TIMI bleeding	5.0	3.8	0.002
Need for blood transfusion	4.0	3.0	<0.001
CABG-related TIMI major bleed	13.4	3.2	<0.001

TRILOGY ACS: Results

Plavix vs. Prasugrel in ACS without PCI -> No reduction in MACE for 12 M

• Primary Outcome Measures:

Reduction in risk of the composite endpoint of first occurrence of CV death, MI, or stroke

• While prasugrel failed to show a reduction in major cardiovascular events compared with clopidogrel in the first 12 months of study, prasugrel appeared to reduce the risk of events from 12 months onward as the curves began to diverge thereafter.

•Through a median follow-to of 17 m mh., http://doi.org/cardiovascular.death, MI, or stroke among those <75 years occurred in 13.9% of patients treated with prasugrel vs 16.0% of patients treated with clopidogrel (HR 0.91; p=0.21). Similar results were observed in the overall population.

•The researchers also performed a prespecified analysis of multiple recurrent ischemic events (all components of the primary end point), which hinted at a lower risk with prasugrel than clopidogrel among those under 75 years (HR 0.85; p=0.044). This suggested a time-dependent treatment effect in favor of prasugrel, with much of the reduction in recurrent events being after one year, which was consistent with the time dependence seen with the primary end point.

Characteristics of ticagrelor

 Ticagrelor is a recently approved reversible P2Y12 antagonist that does not require hepatic bioactivation.

P2Y₁₂ inhibitors

	Plavix®	Prasugrel	Ticagrelor
Class	Thienopyridine	Thienopyridine	Triazolopyrimidine
Reversibility	Irreversibility	Irreversibility	Reversibility
Activation	Prodrug	Prodrug	Active drug
Duration of effect	3-10 days	5-10 days	3-4 days
Withdraw before major surgery	5 days	7 days	5 days

Results – IPA (Inhibition of Platelet Aggregation %)* subject: patients with stable CAD

*IPA measured by LTA.

Results – PRU (Platelet Reaction Unit) * subject: patients with stable CAD

*PRU assessed by VerifyNow.

Red: Ticagrelor Green: Prasugrel

Both ticagrelor and prasugrel exhibit an initial delay in the onset of antiplatelet effects in STEMI.

Platelet reactivity does not differ among patients treated with either ticagrelor or prasugrel during the first 24 hours of STEMI.

*PRU assessed by VerifyNow.

Randomized Assessment of Ticagrelor vs Prasugrel Antiplatelet Effects in Patients with STEMI. Circ Cardiovasc Interv. 2012;5:797-804.
Reduction in MACE are similar in the 3 strategies

Bleeding is significantly increased with both prasugrel and ticagrelor

International Journal of Cardiology 158 (2012) 181–185

Additional financial cost much larger for prasugrel and ticagrelor

Meta-Analysis Comparison of Prasugrel, Ticagrelor and Clopidogrel in 3 RCCT* Involving 32,893 Patients

Outcome				OR (95% CI)	P value
Death/MI/Strol	ke	-1		0.83 (0.77-0.89)	<0.001
Death				0.83 (0.74-0.93)	0.001
Nonfatal MI			-	0.79 (0.73-0.86)	0.001
Nonfatal Strok	e			—— 1.12 (0.91-1.38)	0.28
Stent thrombo	sis	 _		0.61 (0.51-0.74)	<0.001
Major bleed			++	1.09 (0.99-1.21)	0.08
Pras	0.50 ugrel/Tic	0.75 agrelor be	1.0 tter Cl	1.25 op better	
DISPERSE 2, PLAT	το, τκιτο	N-TIMI 38			
were -			Adapted fro	m Biondi-Zoccai et al. Int J Cardio	12011;150:325

PLATO Study Clopidogrel vs. Ticagrelor

PLATO study design

NSTE-ACS (moderate-to-high risk) STEMI (if primary PCI) Clopidogrel-treated or -naive; randomised within 24 hours of index event (N=18,624) Clopidogrel If pre-treated, no additional loading dose; if naive, standard 300 mg loading dose, then 75 mg qd maintenance; (additional 300 mg allowed pre PCI)

6–12-month exposure

Primary endpoint: CV death + MI + Stroke Primary safety endpint: Total major bleeding

PCI = percutaneous coronary intervention; ASA = acetylsalicylic acid; CV = cardiovascular; TIA = transient ischaemic attack

PLATO: Primary Efficacy Endpoint

(Composite of CV Death, MI, or Stroke)

Both groups included aspirin. *NNT at one year.

Wallentin L, et al. N Engl J Med. 2009;361:1045-1057.

PLATO: Secondary Efficacy Endpoints

Both groups included aspirin

Wallentin L, et al. *N Engl J Med*. 2009;361:1045–1057. Wallentin L, et al. *N Engl J Med*. 2009;361:1045–1057. Supplement. BRILINTA: Summary of Product Characteristics, 2010.

Primary efficacy_PLATO study event (composite of CV death, MI or stroke)

² DiNicolantonio JJ, Tomek A, Inactivations, deletions, non-adjudications, and downgrades of ;361:1045–1057. clinical endpoints on ticagrelor, Int J Cardiol (2013), http://dx.doi.org/10.1016/j.ijcard.2013.07.020

¹ Wallentin L, et al. N Engl J Med. 2009;361:1045–1057.

PLATO <u>STE-ACS (STEMI)</u> Primary composite endpoint [Steg 2010:J-L]

Months after randomisation

ACS, acute coronary syndromes; CI, confidence interval; CV, cardiovascular; HR, hazard ratio; MI, myocardial infarction; STE, ST-segment elevation. Steg PG, et al. *Circulation* 2010;122:2131–2141; Wallentin L, et al. N Engl J Med 2009;361:1045–1057.

STEMI Subgroup_PLATO Study *Efficacy end-points @ 12 months*

	Clopidogrel	Ticagrelor*	HR	ARR
CV death/MI/stroke	10.8%	9.4%	0.87 (0.75-1.01)	1.4% p=0.07
CV death	5.5%	4.5%	0.83 (0.67-1.02)	1% p=0.07
Stroke	1%	1.7%	1.63 (1.07-2.48)	↑ 0.7% p=0.02

Steg et al Circulation 2010; 122: 2131-41.

Primary Endpoint: Unstable Angina

FDA website: AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/UCM221383

Ticagrelor: Efficacy Across Patient Subgroups

		Total	KM% at	Month 1	2		Interaction
Characteristic		Patients	Tic	Clop	HR (95% CI)		P-value
Overall Treatment	Effect	18624	9.8	11.7	0.84 (0.77, 0.92)		
	< 65 years	10643	7.2	8.5	0.85 (0.74, 0.97)		
Age	< 75 years	15744	8.6	10.4	0.82 (0.74, 0.91)	-	0.2166
	≥75 years	2878	16.8	18.3	0.94 (0.78, 1.12)		_
0	Male	13336	9.2	11.1	0.85 (0.76, 0.95)	+	0.8182
Sex	Female	5288	11.2	13.2	0.83 (0.71, 0.97)		
	< 60 kg	1312	13.1	17.3	0.75 (0.56, 0.99)		0.3615
Body Weight	≥ 60 kg	17256	9.5	11.2	0.86 (0.78, 0.94)	-	
Prior Non-	No	17462	9.2	11.1	0.84 (0.76, 0.93)	+	0.8351
Stroke /TIA	Yes	1152	19.0	20.8	0.87 (0.66, 1.13)		-
Diabetes Mellitus	No	13962	8.4	10.2	0.83 (0.74, 0.92)	+	0.4882
	Yes	4662	14.1	16.2	0.88 (0.76, 1.03)		
	Uns. Angina	3112	8.6	9.1	0.96 (0.75, 1.22)		- 0.4085
Final Diagnosis	NSTEMI	7955	11.4	13.9	0.83 (0.73, 0.94)	+	
	STEMI	7026	8.5	10.1	0.84 (0.72, 0.98)	+	
	Other	489	9.1	14.7	0.58 (0.34, 1.00)		
						0.5 1.	0 2.0
Supplement to: Wallentin L, I	Becker RC, Budaj A, e	t al. Ticagrelor	versus clopid	ogrel in patier	nts with acute	Tic Better	Clop Better CC-2

coronary syndromes. N Engl J Med 2009;361:1045-57

Primary efficacy endpoint by clopidogrel loading dose

Ticagrelor vs. Clopidogrel 600 mg loading dose -> the same efficacy

Deaths by PCI within 10h

FDA website: AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/UCM221383

Deaths by PCI within 10h & MI Type

No difference !

FDA website: AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/UCM221383

Regional Disparity in Primary Efficacy _ PLATO Study

Serebruany VL, et al. Thromb Haemost 2011;105:752-9

Recommendations of international guidelines for P2Y₁₂ inhibitors use in ACS patients

		ESC /EACTS 2010 Myocardial revascularization guidelines	ESC 2011 NSTEACS guidelines	ACC/AHA 2009 Focused STEMI guidelines update	ACCF/AHA/ SCAI 2011 Focused PCI & NSTEACS, STEMI guidelines updates	ACCF/AHA 2012 UA/NSTEMI guidelines
NSTEACS	Clopidogrel	ΙС	ΙB	-	ΙB	ΙB
	Ticagrelor	I B	I B	-	I B	I B
STEMI	Clopidogrel	IC	-	I C	I B	-
* I C for admi	Ticagrelor	IB	-	Not approved yet by FDA	ΙB	-

PLATO : Time to Major Bleeding – Primary Safety Event

PLATO 研究顯示, Ticagrelor 的 bleeding risk 與 Plavix[®] 相當

PLATO

Wallentin L et al. N Engl J Med. 2009 Sep 10;361(11):1045-57.

Bleeding_PLATO Study

Both groups included aspirin.

56

Non-CABG and CABG-related major bleeding

Wallentin L et al. N Engl J Med. 2009 Sep 10;361(11):1045-57.

Intracranial bleeding

Wallentin L et al. N Engl J Med. 2009 Sep 10;361(11):1045-57.

Major Bleeding is Associated with an Increased Risk of Hospital Death in ACS Patients

GRACE Registry (24,045 ACS patients)

*After adjustment for comorbidities, clinical presentation and hospital therapies **p<0.001 for differences in unadjusted death rates

Moscucci M. Eur Heart J 2003;24:1815-23.

Impact of MI and Major Bleeding within First 30 Days on Risk of 1-Year Mortality

Stone GW. JAMA 2007; 298:2497-506

Safety_PLATO Study

All patients	Ticagrelor (n=9,235)	Clopidogrel (n=9,186)	p value [*]
Dyspnoea, %	Ø		
Any	13.8	7.8	<0.001
With discontinuation of study treatment	0.9	0.1	<0.001
Neoplasms arising during treatment, %			
Any	1.4	1.7	0.17
Malignant	1.2	1.3	0.69
Benign	0.2	0.4	0.02

*p values were calculated using Fischer's exact test

Dyspnea time to event analysis

803

24

Dyspnea

Holter monitoring_PLATO Study

Holter monitoring at first week	Ticagrelor (n=1,451)	Clopidogrel (n=1,415) p value
Ventricular pauses ≥3 seconds, %	5.8	3.6 0.01
Ventricular pauses ≥5 seconds, %	2.0	1.2 0.10
Holter monitoring at 30 days	Ticagrelor (n= 985)	Clopidogrel (n=1,006) p value
Holter monitoring at 30 days Ventricular pauses ≥3 seconds, %	Ticagrelor (n= 985) 2.1	Clopidogrel (n=1,006) p value 1.7 0.52

Bradycardia related events_PLATO Study

	Ticagrelor	Clopidogre	
Bradycardia-related event, %	(n=9,235)	(n=9,186)	p value
Pacemaker Insertion	0.9	0.9	0.87
Syncope	1.1	0.8	0.08
Bradycardia	4.4	4.0	0.21
Heart block	0.7	0.7	1.00
Heart block	0.7	0.7	1.00

- In previous ticagrelor clinical study, AE asymptomatic ventricular pauses was observed.
- In PLATO, patients with an increased risk of bradycardic events (eg, patients without a pacemaker who have <u>sick sinus</u> <u>syndrome, 2nd or 3rd degree AV block or bradycardic-</u> <u>related syncope) were excluded</u>

Laboratory parameters_PLATO Study

All patients	Ticagrelor (n=9,235)	Clopidogrel (n=9,186)	p value [*]
% increase in creatinine from baseline			
At 1 month	10 ± 22	8 ± 21	<0.001
At 12 months	11 ± 22	9 ± 22	<0.001
Follow-up visit	10 ± 22	10 ± 22	0.59
% increase in uric acid from baseline			
At 1 month	14 ± 46	7 ± 44	<0.001
At 12 months	15 ± 52	7 ± 31	<0.001
Follow-up visit	7 ± 43	8 ± 48	0.56

Values are mean % \pm SD; *p values were calculated using Fisher's exact test

Hormonally-related AEs

Characteristic	Ticagrelor	Clopidogrel	RR
All patients	N= 9235	N= 9186	
Females only	N= 2634	N= 2603	
Males only	N= 6601	N= 6583	
	n(percent)	n(percent)	
Vaginal bleeding (females)	22 (0.84)	17 (0.65)	1.3
Gynecomastia/ swelling/ mass (males)	17 (0.26)	3 (0. 05)	5.2
Prostate cancer (males)	13 (0.19)	12 (0.18)	1.1
BPH (males)	10 (0.15)	8 (0.12)	1.3
Breast Cancer (females)	4 (0.15)	10 (0.38)	0.4
Sexual Dysfunction (males)	3 (0.05)	11 (0.17)	0.3
Cervical/ uterine malignancy (females)	1 (0)	0 (0)	0 30

Gynecomastia, breast swelling or breast mass

www.fda.gov

Premature discontinuation of study drugs

All patients	Ticagrelor n(%)	Clopidogrel n(%)	p value [*]
Premature discontinuation	2186 (23.4)	1999(21.5%)	0.002
Because of adverse event	690 (7.4)	556 (6.0)	<0.001
Because of dyspnea	79 (0.9)	13 (0.1)	<0.001
Because of patient's unwillingness to continue	946 (10.1)	859 (9.2)	0.04
Other reasons	550 (5.9)	584 (6.3)	0.27

Therapeutic considerations

- Based on <u>1,000</u> patients admitted to hospital for ACS, using ticagrelor instead of clopidogrel for 12 months resulted in
 - 14 fewer deaths; 15 more major+minor bleeds
 - 11 fewer myocardial infarctions ; 6 more non-CABG bleeds
 - 6–8 fewer cases with stent thrombosis
 - 9 more discontinuation because of dyspnoea
- Treating with ticagrelor instead of clopidogrel for one year
 - For every 54 patients, one event of CV death, MI or stroke was prevented
 - For every 91 patients, one MI/CV death was prevented

Comparison of Indications of Different Antiplatelets

		ACS		5	PAD
	PCI	Medically managed	CABG	15	
Plavix	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ticagrelor	\checkmark	\checkmark	\checkmark		
Prasugrel	\checkmark				

Plavix: indicated to prevent atherothrombosis events in multiple vascular beds (cerebrovascular, coronary and peripheral arterial bed).

Ticagrelor with ASA: indicated for the prevention of atherothrombotic events in adult patients with unstable angina, NSTEMI or STEMI. The indication is for only one vascular bed.

Other Comparisons of Current Antiplatelet Drugs
Efficacy of high dose clopidogrel did not differ from prasugrel or ticagrelor

all included studies (black) and subgroup analysis in ACS patients (red)

14 randomised controlled trials enrolling patients scheduled for and/or undergoing PCI with randomisation to high- and standard-dose clopidogrel, prasugrel and ticagrelor, on top of ASA, were included in the analysis.

(high- vs. standard-dose clopidogrel: 9 trials, prasugrel vs. high-dose clopidogrel: 2 trials, prasugrel vs. standard-dose clopidogrel: 2 trials, ticagrelor vs. standard-dose clopidogrel: 1 trial)

Steiner S, et al. Thromb Haemost 2012;108:318-27.

PRU Values and Window Effect

Accu

metrics

J Am Coll Cardiol 2011;57:2474-83

Verify

ACS Patients With HTPR on Clopidogrel 24 h Post-PCI Randomized to Ticagrelor 90 mg Twice Daily or Prasugrel 10 mg Daily

Alexopoulos D, et al.^[9]

Conclusions

Conclusion

- For unstable angina or STEMI patients, the risks of CV death, MI and stroke between Plavix and ticagrelor are not significantly different.
- From PLATO study, non-CABG major bleeds and major+minor bleeds were substantially increased with ticagrelor.
- Use newer antiplatelet agents, such as prasugrel or ticagrelor, preferably when a sufficient <u>platelet inhibition could not be</u> <u>achieved after the use of high-dose clopidogrel or the</u> <u>occurrence of stent thrombosis.</u>
- Antiplatelet agents should be used according to personal conditions and/or co-morbidities.

Thanks for Your Attention !