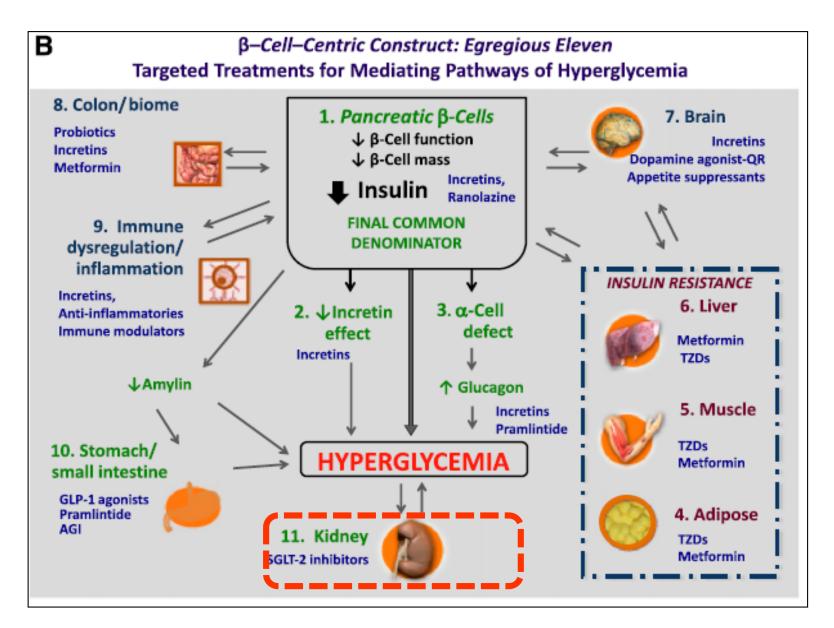
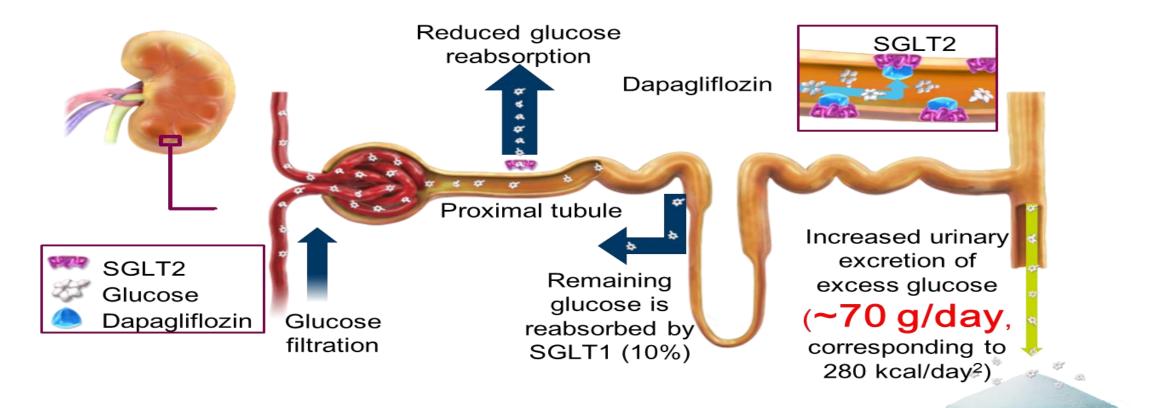
New evidence of pharmacologic approaches to glycemic treatment: Which SGLT2i is better after metformin use?

臺北榮總內分泌新陳代謝科 主治醫師 林怡君 20180901


Outline

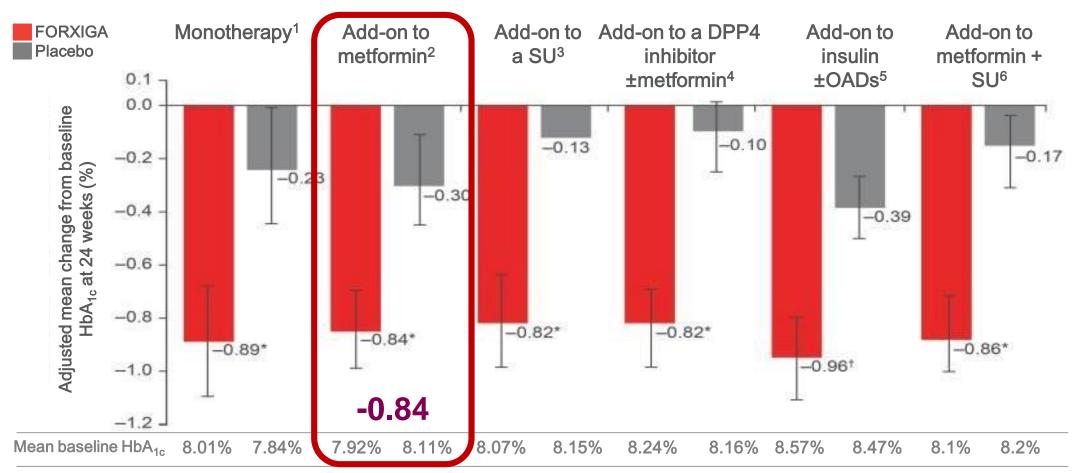
- 1. SGLT2i Clinical Data vs Major Medication
 - Efficacy of Glycemic Control
 - vs DPP4i / with DPP4i
 - Beyond Glycemic Control
- 2. Guidelines
- 3. Special consideration


Outline

- 1. SGLT2i Clinical Data vs Major Medication
 - Efficacy of Glycemic Control
 - vs DPP4i / with DPP4i
 - Beyond Glycemic Control
- 2. Guidelines
- 3. Special consideration

Unique Insulin Independent MOA to Control Glucose

Forxiga Inhibits SGLT2 by an Insulin-independent Mechanism to Remove Excess Glucose in the Urine



- By inhibiting SGLT2, dapagliflozin removes excess glucose in the urine and lowers HbA_{1c}¹
- Dapagliflozin is >1400-times more selective for SGLT2 versus SGLT1¹

SGLT2 and SGLT1—their relative roles in glucose reabsorption^{1,2}

	SGLT2	SGLT1
Site	Almost exclusively kidney	Primarily intestine with some in kidney
Sugar specificity	Glucose	Glucose and galactose
Affinity for glucose	Low (2 mM)	High (0.4 mM)
Capacity for glucose transport	High (10 nmol/mg/min)	Low (2 nmol/mg/min)
Role	Renal glucose reabsorption	Dietary glucose absorption Renal glucose reabsorption

Extensive Evidence for Using Across a Broad Range of Treatments

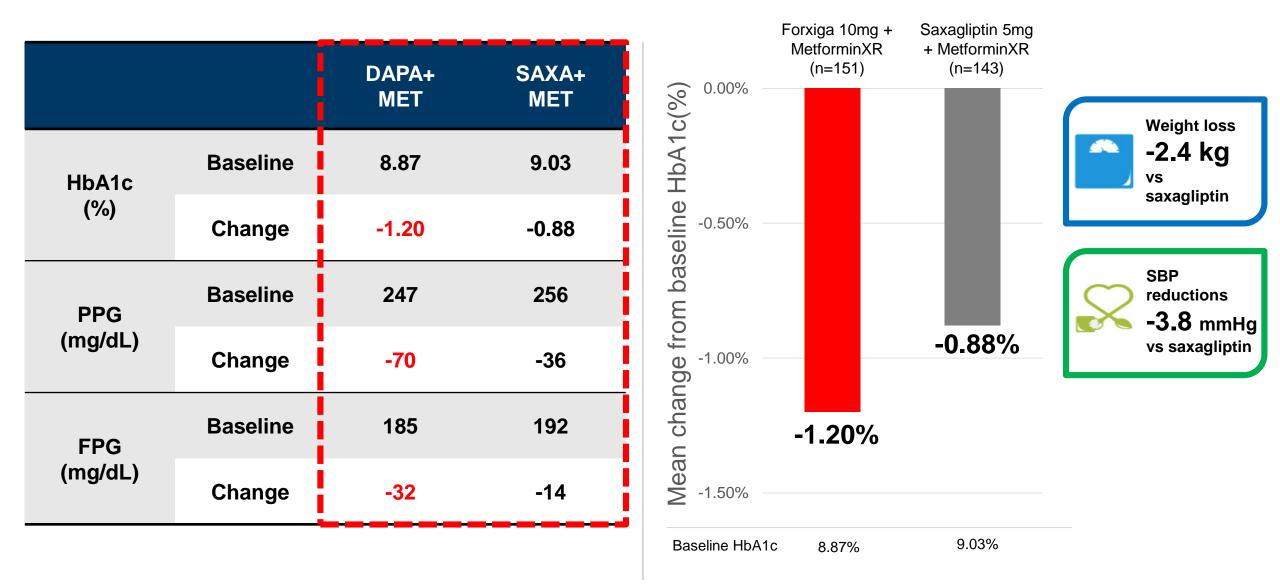
*Statistically significant versus placebo (p<0.0001); †Statistically significant versus placebo (p<0.001).

DPP4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; OAD, oral antidiabetic drug; SU, sulphonylurea.

1. Ferrannini E, *et al. Diabetes Care* 2010;**33**:2217–24; 2. Bailey CJ, *et al. Lancet* 2010;**375**:2223–33; 3. Strojek K, *et al. Diabetes Obes Metab* 2011;**13**:928–38; 4. Mathieu C, *et al.* Presented at the Annual Scientific Sessions of the American Diabetes Association, Boston, USA. 5–9 June 2015. Abstract 105-OR;

5. Wilding JPH, *et al. Ann Intern Med* 2012;**156**:405–15; 6. Matthaei S, *et al.* Poster presented at the 49th European Association for the Study of Diabetes, Barcelona, Spain. 23–27 September 2013; Abstract 937-P.

Outline


- 1. Forxiga Clinical Data vs Major Medication
 - Efficacy of Glycemic Control
 - vs DPP4i / with DPP4i
 - Beyond Glycemic Control
- 2. Guidelines
- 3. Special consideration

Pooled Between-group Differences in the change in HbA1c for Comparisons of Metformin-based Combination Therapies

Comparison (Drug 1 vs. Drug 2)	Studies, <i>n</i>	Participants, <i>n</i>	Study Characteristics					Effect S	ize (95% CI)	Strength of Evidence
Metformin-based combinations										
Met + TZD vs. Met + SU	8	3063	≤52 wk	-•	\vdash			-0.06 (-0.19 to 0.06)	Moderate
Met + TZD vs. Met + DPP-4	5	926	≤52 wk	-+				-0.12 (-0.21 to -0.02)	Moderate
Met + SU vs. Met + SGLT-2	3	2933	104 wk		-			0.17 (0	10 to 0.20)	Moderate
Met + DPP4 vs. Met + SGLT-2	4	1278	≤52 wk		-			0.17 (0	08 to 0.26)	Moderate
Met + DPP4 vs. Met + GLP-1	3	1385	≤52 wk					0.65 (0	54 to 0.75)	Moderate
			-						-	
				-0.5	D	0.5	1	1.5		
				Favors Drug 1	I	avors	Drug 2			
			1	Mean Between-Group	Differe	ence in	HbA _{1c}	%		

Nisa M. Maruthur et al. Ann Intern Med. 2016;164:740-751.

The Efficacy of HbA1c Reduction - SGLT2i vs DPP4i Post-hoc Analysis of HbA1c Reductions with Forxiga vs DPP4i at 24 weeks

Rosenstock J, et al. Diabetes Care 2015;38:376-83

More than 56% T2DM Patients are Overweight in Taiwan

Table 1 – Clinical characteristics (mean \pm SD) of, and percentage of goals attained by, diabetic subjects who participated in the 2011 survey.

	Total	Type 1 diabetes	Type 2 diabetes	
Number	5599	82	5511	
Men (%)	49.8	45.1	49.9	
Age (years)	62.8 ± 12.4	38.1 ± 14.0	63.2 ± 12.0	
Duration of diabetes (years)	10.6 ± 7.6	13.5 ± 8.1	10.5 ± 7.6	
Height (cm)	160 ± 9	163 ± 9	160±9	56% T2DM
Weight (kg)	67 ± 13	62 ± 12	67 ± 13	patients are
BMI (kg/m²)	26.0 ± 4.2	23.3 ± 3.9	26.1 ± 4.2	overweight*
% of <23 kg/m ²	22.8	50.6	22.4	
% of 23–24.9 kg/m ²	21.4	28.4	21.3	
% of 25–29.9 kg/m ²	40.2	12.3	40.6	
% of \geq 30 kg/m ²	15.6	8.6	15.7	

*BNHP=Bureau of National Health Promotion 國民健康局; WHO definition: Overweight (BMI≥25), Obese(BMI≥30) Yu Neng-Chun, et al., diabetes research and clinical practice 99(2013)112 – 119

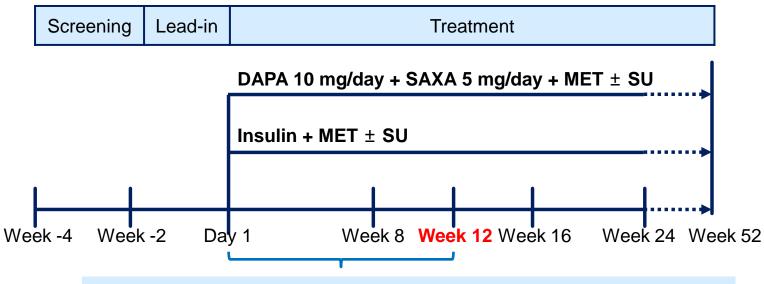
Prevalence of Hypertension in T2DM Patients is over 60% in Taiwan

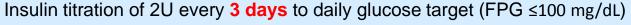
Gender	Age	N or %		Нуре	rtension			Dyslip	idemia		Hy	pertension	+ Dyslipider	nia
			2000	2004	2008	p *	2000	2004	2008	p*	2000	2004	2008	p*
F	<40	Number	2847	3465	4872	_	1584	3891	5499	-	609	1368	2106	-
		Prevalence	15.03%	18.76%	22.95%	< 0.001	8.36%	21.06%	25.91%	< 0.001	3.22%	7.41%	9.92%	<0.0
	40-65	Number	92, 310	124,149	160,098	-	36,468	89,253	126,765	_	23,490	55,800	81,300	_
		Prevalence	51.55%	54.95%	58.28%	< 0.001	20.37%	39.50%	46.15%	< 0.001	13.12%	24.70%	29.60%	<0.0
	>65	Number	118,140	169,116	230,166	_	31,731	82,587	127,146	_	25,020	65,028	101,175	_
		Prevalence	71.41%	74.28%	76.91%	< 0.001	19.18%	36.27%	42.49%	< 0.001	15.12%	28.56%	33.81%	<0.0
	Total (F)	Number	213,297	296,730	395.136	_	69,783	175,731	259,410	_	49, 119	122,196	184,581	_
		Prevalence	58.69%	62.85%	66.39%	< 0.001	19.20%	37.22%	43.58%	< 0.001	13.52%	25.88%	31.01%	<0.0
M	<40	Number	4419	6627	9897	_	3507	8277	11,937	_	1215	3066	5010	_
		Prevalence	20.02%	24.72%	30.81%	< 0.001	15.89%	30.88%	37.16%	< 0.001	5.50%	11.44%	15.60%	<0.0
	40-65	Number	80,652	124,929	182,427	_	34,683	92,295	146,253	_	20, 139	52,659	88,890	_
		Prevalence	45.11%	48.69%	54.25%	< 0.001	19.40%	35.97%	43.49%	< 0.001	11.26%	20.52%	26.44%	<0.0
	>65	Number	95, 337	130,467	173,787	_	19,248	52,044	82,314	_	14,502	38,946	62,472	_
		Prevalence	67.29%	69.38%	72.03%	< 0.001	13.58%	27.68%	34.12%	< 0.001	10.24%	20.71%	25.89%	<0.0
	Total (M)	Number	180,408	262,023	366.111	_	57,438	152,616	240,504	_	35,856	94,671	156,372	_
		Prevalence	52.66%	55.58%	60.05%	< 0.001	16.77%	32.37%	39.45%	< 0.001	10.47%	20.08%	25.65%	<0.0

Table 1 Prevalence of hypertension and dyslipidemia in individuals with diabetes stratified by gender and age in Taiwan, 2000–2009.

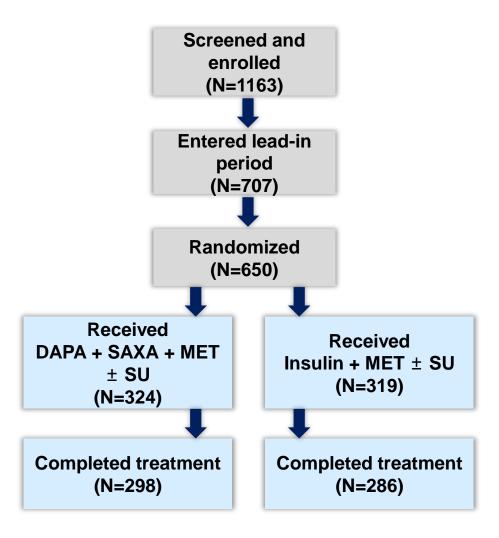
* p for Kendall tau-c coefficient.

Dapagliflozin plus Saxagliptin Shows Noninferior A1C Reduction vs. Insulin Glargine in Patients with Type 2 Diabetes Inadequately Controlled by Metformin With or Without Sulfonylurea

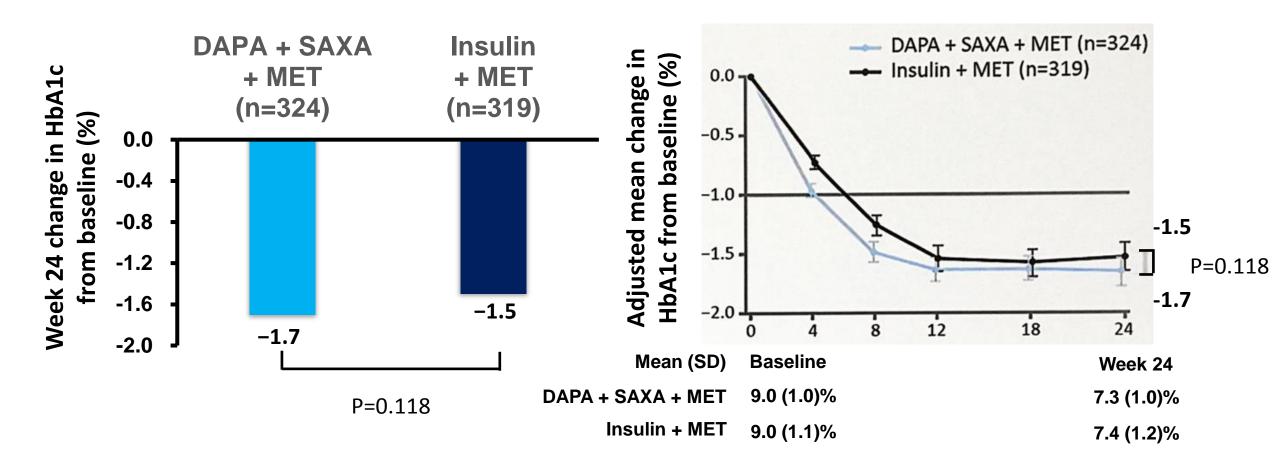

TINA VILSBØLL, ELLA EKHOLM, EVA K. JOHNSSON, NALINA DRONAMRAJU, SERGE JABBOUR, MARCUS LIND, Copenhagen, Denmark, Mölndal, Sweden, Gaithersburg, MD, Philadelphia, PA, Gothenburg, Sweden



Study design


 Multinational, randomized, open-label, active-controlled, parallelgroup, 24-week, phase 3b trial

- Inclusion criteria:
 - Age ≥18 years
 - BMI ≤45.0 kg/m²
 - Stable-dose MET (≥1500 mg/day for >8 weeks) or MET with SU (≥50% maximum dose)
 - Baseline HbA1c 8.0-12.0%


DAPA, dapagliflozin. MET, metformin. SAXA, saxagliptin. SU, Sulfonylurea

Baseline characteristics

Characteristic	DAPA + SAXA + MET± SU (n=324)	Insulin + MET± SU (n=319)
Age, years	55.7 (9.5)	55.3 (9.6)
Women, n (%)	148 (45.7)	148 (46.6)
BMI, kg/m²	32.5 (5.3)	32.0 (5.4)
Body weight, kg	89.8 (17.7)	89.4 (18.4)
Duration of T2D, years	9.6 (6.5)	9.3 (6.2)
HbA1c, %	<mark>9.0</mark> (1.0)	<mark>9.1</mark> (1.1)
eGFR, mL/min/1.73 m ²	92.2 (20.2)	92.9 (22.5)
FPG, mg/dL	189.5 (55.5)	188.6 (52.8)
Proportion of patients receiving SU, n (%)	166 (<mark>51.2</mark>)	165 (<mark>51.7</mark>)

Non-inferior reductions in HbA1c with DAPA + SAXA compared with insulin add-on to MET



A mixed statistical model was used to analyze between group differences. Mean (SD) insulin glargine dose at week 24 was 36.6 (17.0) U.

32 DAPA, dapagliflozin. MET, metformin. SAXA, saxagliptin. SD, standard deviation.

Proportion of patients achieving HbA1c <7%

P=0.924

A mixed statistical model was used to analyze between group differences

33 DAPA, dapagliflozin. MET, metformin. SAXA, saxagliptin.

DAPA + SAXA

+ MET

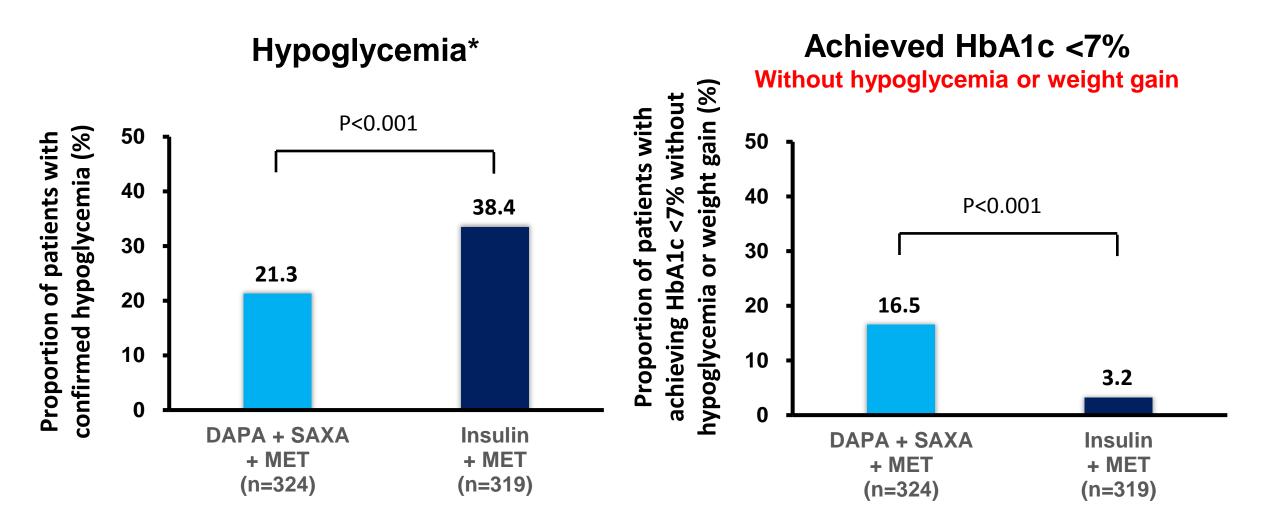
(n=324)

33.2

50

40

30


20

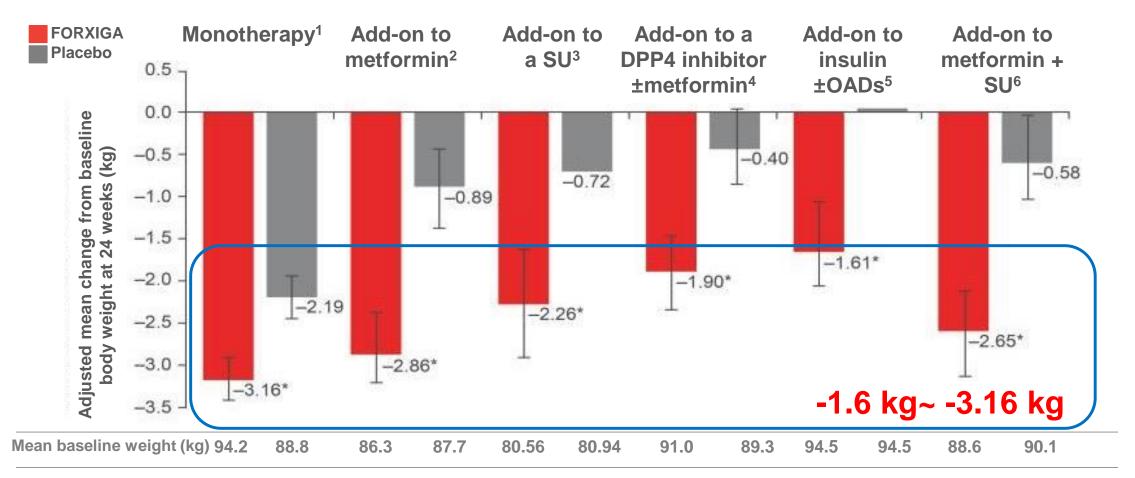
10

0

achieving HbA1c <7% (%)

Proportion of patients

A mixed statistical model was used to analyze between group differences.


*Confirmed hypoglycemia= plasma glucose ≤70 mg/dL or signs/symptoms of hypoglycemia with self-monitored blood glucose ≤70 mg/dL

34 DAPA, dapagliflozin. MET, metformin. SAXA, saxagliptin.

Outline

- 1. Forxiga Clinical Data vs Major Medication
 - Efficacy of Glycemic Control
 - vs DPP4i / with DPP4i
 - Beyond Glycemic Control
- 2. Guidelines
- 3. Special consideration

Additional Benefit of Body Weight Reduction Across a Broad Range of Treatments

FORXIGA is not indicated for the management of weight loss. Weight change was a secondary endpoint in clinical trials. *Statistically significant versus placebo (p<0.0001).

DPP4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; OAD, oral antidiabetic drug; SU, sulphonylurea.

1. Ferrannini E, et al. Diabetes Care 2010;33:2217–24; 2. Bailey CJ, et al. Lancet 2010;375:2223–33; 3. Strojek K, et al. Diabetes Obes Metab 2011;13:928–38; 4. Mathieu C, et al. Presented at the Annual Scientific Sessions of the American Diabetes Association, Boston, USA. 5–9 June 2015. Abstract 105-OR;

5. Wilding JPH, et al. Ann Intern Med 2012;156:405–15; 6. Matthaei S, et al. Poster presented at the 49th European Association for the Study of Diabetes, Barcelona, Spain. 23–27 September 2013; Abstract 937-P.

Weight Loss Provides Multiple Benefits in T2DM patients

Odds ratio meaningful changes in CVD risk factors at 1 year after a weight loss of ≥5% to <10% (n=1000/5145)

Clinical criteria	Odds ratio	95% CI
0.5% 🕈 in HbA _{1c}	3.52	2.81, 4.40
5 mmHg 🔸 in SBP	1.56	1.27, 1.91
5 mmHg 🕈 in DBP	1.48	1.20, 1.82
5 mg/dL 🔺 in HDL cholesterol	1.69	1.37, 2.07
40 mg/dL 🕈 in triglycerides	2.20	1.71, 2.83

This study was an observational analysis of participants in the Look AHEAD study conducted at 16 US sites in 5,145 participants (40.5% male, 37% from ethnic/racial minorities).

AHEAD, Action for Health Diabetes; CI, confidence interval; CVD, cardiovascular disease; DBP, diastolic blood pressure; HDL, high-density lipoprotein, SBP, systolic blood pressure. Wing RG, et al. Diabetes Care 2011;34:1481–6.

Look AHEAD: Incidence of Cardiovascular Disease Varied by Changes in Weight (overall study population)

	Weight-change categories (percentage weight loss in first year; n=4834)				
	Gain or stable (<2% loss)	Small loss (≥2-<5%)	Medium loss (≥5-<10%)	Large loss (≥10%)	p value
Primary outcome					
Events per person-years	289/17075	141/7870	154/8570	128/8942	
Crude rate per 100 person-years	1.69	1.79	1.80	1.43	
Adjusted hazard ratio†(95% CI)	1.00	1.08 (0.88–1.33)	1·16 (0·95–1·42)	0·79 (0·64–0·98), p=0·034*	0.17
Secondary outcome					
Events per person-years	422/16699	206/7657	203/8411	186/8792	
Crude rate per 100 person-years	2.53	2.69	2.41	2.12	
Adjusted hazard ratio† (95% CI)	1.00	1·05 (0·88–1·25)	0·97 (0·82–1·16)	0·76 (0·63–0·91), p=0·003*	0.006

- Lost at least 10% of their body weight in the first year of the study
- 21% lower risk of the primary outcome

tion for Health in Diabetes

• 24% reduced risk of the secondary outcome.

Weight Loss Mainly Associated with Body Fat Mass Reduction

Dapagliflozin demonstrated a significant reduction in fat mass rather than lean tissue or fluid loss sustained up to 102 weeks

FORXIGA is not indicated for the management of obesity.² Weight change was a secondary endpoint in clinical trials.^{2,3}

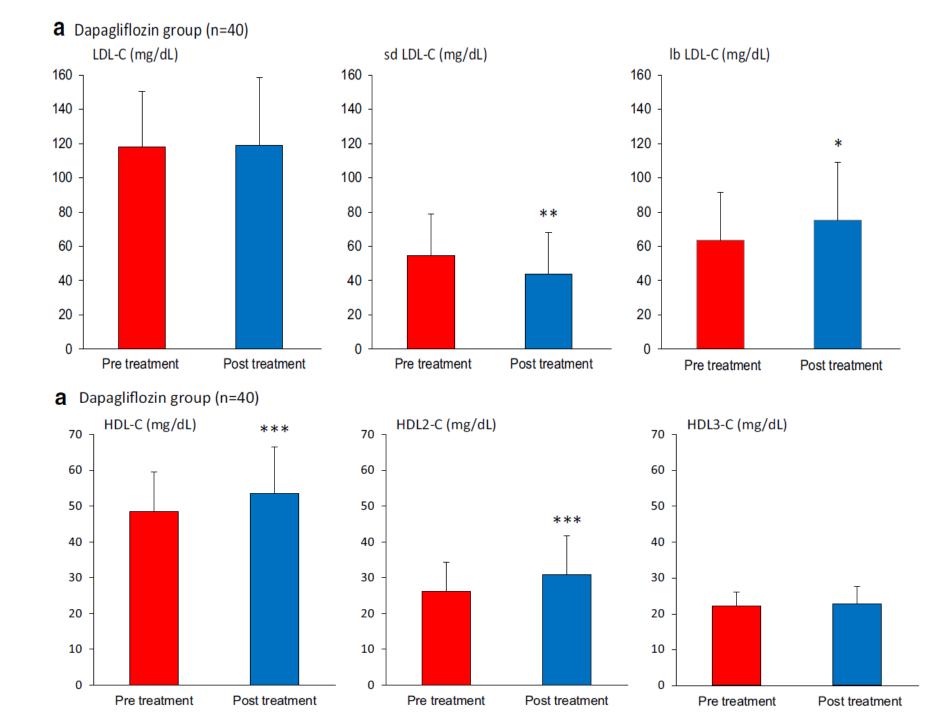
*Data are adjusted mean change from baseline derived from a longitudinal repeated-measure mixed model and include data after rescue therapy.

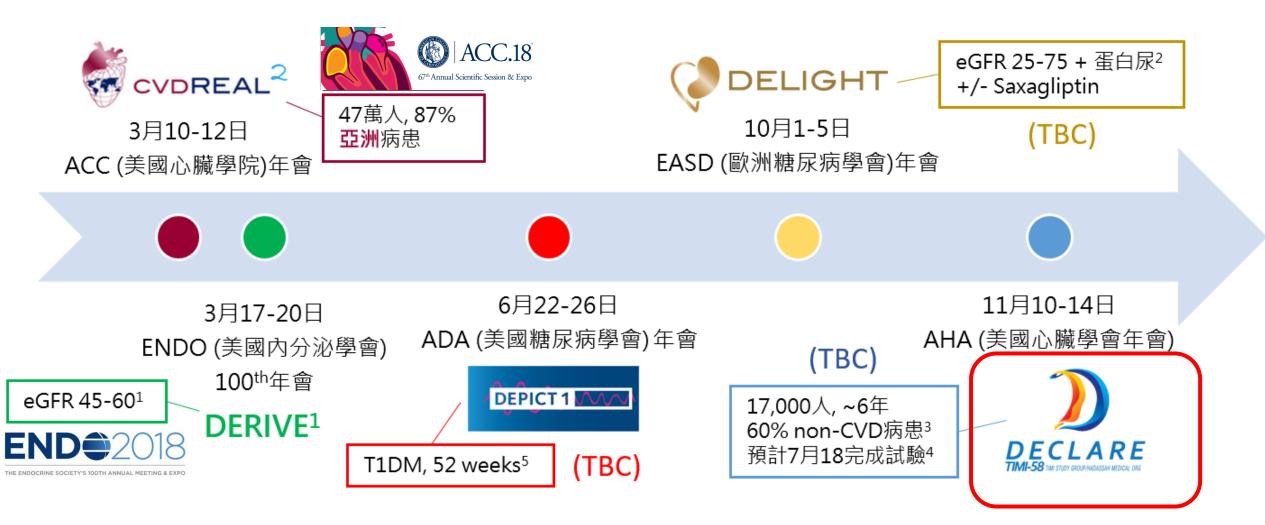
Bolinder J, et al. Diabetes Obes Metab 2014;16:159-69

FORXIGA®. Summary of product characteristics, 2014

Bailey CJ, et al. Lancet 2010;**375**:2223–33.

Hayashi et al. Cardiovasc Diabetol (2017) 16:8 DOI 10.1186/s12933-016-0491-5 Cardiovascular Diabetology


ORIGINAL INVESTIGATION


Open Access

Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: comparison with sitagliptin

Backgrounds: Several clinical studies have revealed that SGLT-2i decrease TG and increase HDL-C and LDL-C level.

2018年 Dapagliflozin預計的重要發表

參考資料: 1. https://clinicaltrials.gov/ct2/show/NCT02413398 2. https://clinicaltrials.gov/ct2/show/study/NCT02547935 3. Itamar Raz et al. The 77th Scientific Sessions of the American

Diabetes Association, San Diego, California, June 9-13, 2017; 1245-P 4. https://clinicaltrials.gov/ct2/show/NCT01730534 5. https://clinicaltrials.gov/ct2/show/NCT02460978

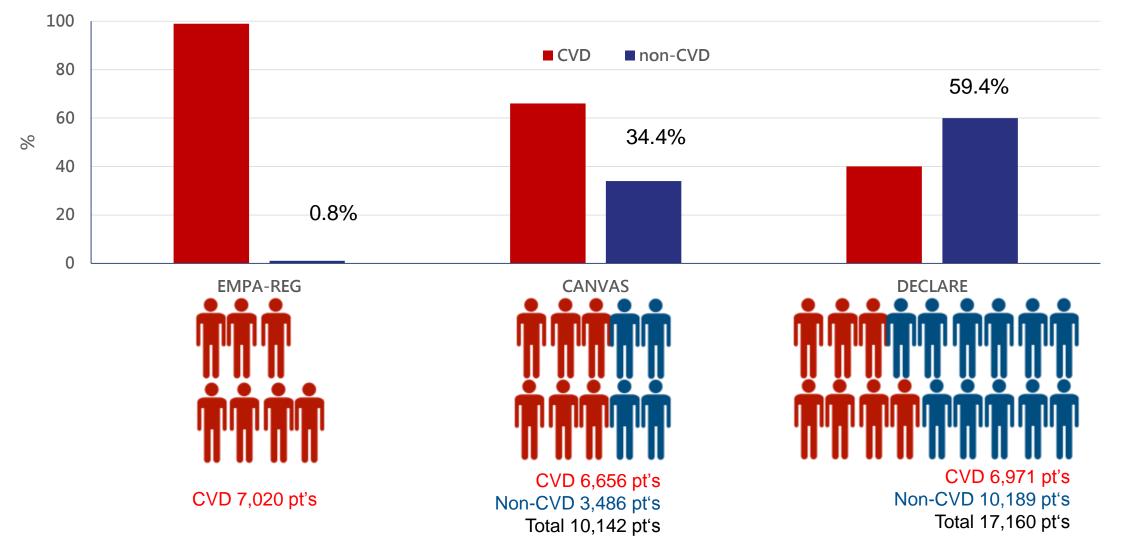
DECLARE-TIMI 58: Broad CV risk population & 2 clinically important CV co-primary endpoints in Type 2 Diabetes

- Add on to background CV and GLD per treating physician
- Event-driven duration: 1,390 events

Secondary Endpoints

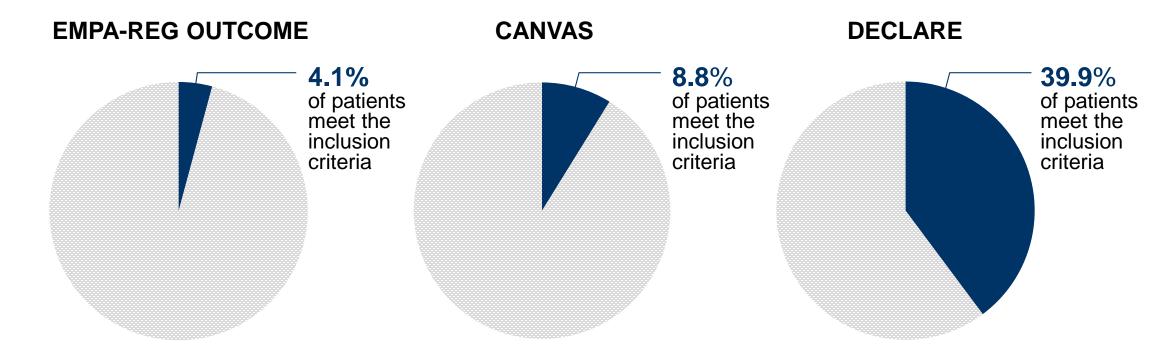
Planned ~6 years follow-up with median ~4.5 years

Estimated Study Completion Date: April 2019 \rightarrow July 18, 2018


All-cause mortality

- Renal composite: sustained ≥40% decrease in eGFR to eGFR<60, ESRD, renal or CV death

CV, cardiovascular; CVD, cardiovascular disease; 2; T2DM, type 2 diabetes mellitus; NF, non-fatal; MACE, major adverse cardiac event; hHF, hospitalization for heart failure. Raz I, et al. *Diabetes Obes Metab* 2018. http://dx.doi.org/10.1111/dom.13217; Wiviott SD, et al. *Am Heart J* 2018. http://dx.doi.org/10.1016/j.ahj.2018.01.012; ClinicalTrials.gov: https://clinicaltrials.gov/ct2/show/NCT01730534


CVD and Non-CVD proportion in 3 CVOTs of SGLT2i

CVD, cardiovascular disease; CVOT, cardiovascular outcome trials; SGLT2i, sodium-glucose co-transporter 2 inhibitor; T2D, type 2 diabetes 1. Zinman B, et al. Cardiovasc Diabetol. 2014 Jun 19;13:102.; 2. Neal B, et al. N Engl J Med. 2017 Aug 17;377(7):644-657; 3. Raz I, et al. Diabetes Obes Metab. 2018 Jan 11. doi: 10.1111/dom.13217.

DECLARE is the most inclusive SGLT2i CV outcomes trial to date^{1,2}

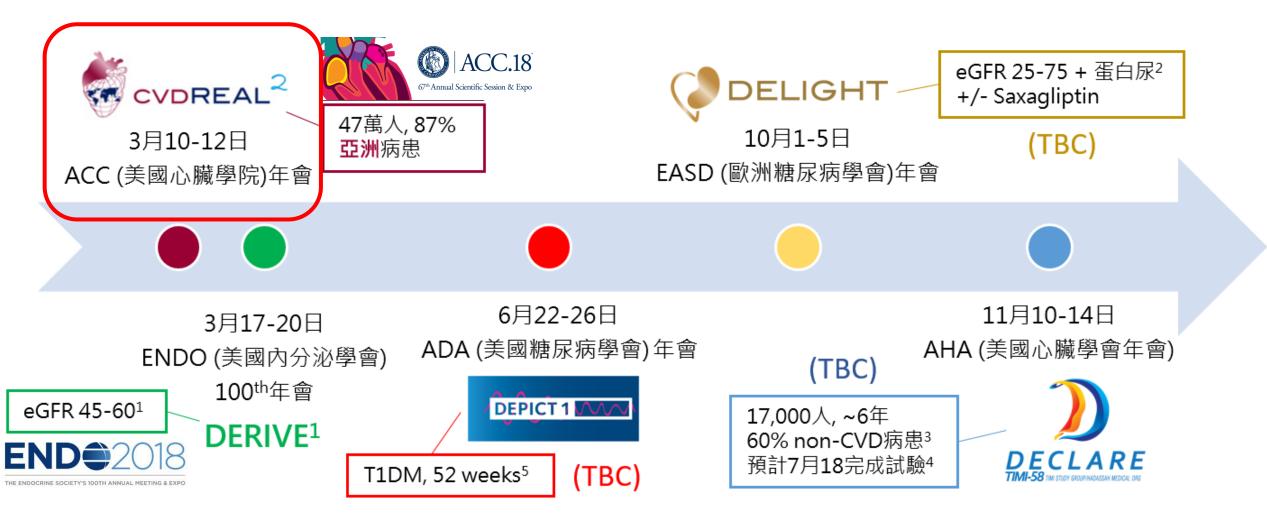
The generalizability of the eligibility criteria of the 3 SGLT2 inhibitor CV outcome studies was assessed in the 2009–2010 and 2011–2012 National Health and Nutrition Examination Survey (NHANES) databases

As the most inclusive study, DECLARE is poised to provide guidance on how to reduce risk in a population of patients with type 2 diabetes and a broader CV risk profile

CV, cardiovascular; SGLT2, sodium glucose co-transporter 2; T2D, type 2 diabetes.

1. Wittbrodt. Presented at the 15th Annual World Congress on Insulin Resistance, Diabetes & Cardiovascular Disease 2017;

2. Am J Manag Care. 2018;24:S138-S145



For the purpose of scientific medical exchange only

Demographics and Disease History

	EMPA-REG	CANVAS	DECLARE
Mean age, y	63.1	63.3	63.8
Female, %	28	35	37
Mean duration of diabetes, y	57% >10 y	14	50% >10 y
Hypertension, %	94	90	89
Cardiovascular disease, %	99	66	40
Myocardial Infarction, %	47	CAD: 56	20
Multi-vessel CAD, %	47	-	12
CABG, %	25	-	10
Stroke, %	23	19	6
PAOD, %	21	21	6
Heart failure, %	Cardiac failure: 10	14	10

2018年 Dapagliflozin預計的重要發表

參考資料: 1. https://clinicaltrials.gov/ct2/show/NCT02413398 2. https://clinicaltrials.gov/ct2/show/study/NCT02547935 3. Itamar Raz et al. The 77th Scientific Sessions of the American

Diabetes Association, San Diego, California, June 9-13, 2017; 1245-P 4. https://clinicaltrials.gov/ct2/show/NCT01730534 5. https://clinicaltrials.gov/ct2/show/NCT02460978

52

RWE complements data from RCTs

	RCT	RWE study
Objective	Can it work?	Does it work?
Purpose	To gain regulatory approval	To influence clinical practice
Setting/design	Ideal conditions	Real world conditions
Intervention	Fixed regimen	Flexible regimen
Compliance	High	Low to high
External validity	Low to medium: homogeneous populations	High: heterogeneous populations
Internal validity	High	Variable

Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors).

Kosiborod M¹, Cavender MA², Fu AZ², Wilding JP², Khunti K², Holl RW², Norhammar A², Birkeland Kl², Jørgensen ME², Thuresson M², Arya N², Bodegård J², Hammar N², Fenici P²; CVD-REAL Investigators and Study Group*.

Author information

Abstract

54

BACKGROUND: Reduction in cardiovascular death and hospitalization for heart failure (HHF) was recently reported with the sodium-glucose cotransporter-2 inhibitor (SGLT-2i) empagliflozin in patients with type 2 diabetes mellitus who have atherosclerotic cardiovascular disease. We compared HHF and death in patients newly initiated on any SGLT-2i versus other glucose-lowering drugs in 6 countries to determine if these benefits are seen in real-world practice and across SGLT-2i class.

METHODS: Data were collected via medical claims primary care/hospital records, and national registries from the United States, Norway, Denmark, Sweden, Germany, and the United Kingdom. Propensity score for SGLT-2i initiation was used to match treatment groups. Hazard ratios for HHF, death, and their combination were estimated by country and pooled to determine weighted effect size. Death data were not available for Germany.

RESULTS: After propensity matching, there were 309 056 patients newly initiated on either SGLT-2i or other glucose-lowering drugs (154 528 patients in each treatment group). Canagliflozin, dapagliflozin, and empagliflozin accounted for 53%, 42%, and 5% of the total exposure time in the SGLT-2i class, respectively. Baseline characteristics were balanced between the 2 groups. There were 961 HHF cases during 190 164 person-years follow-up (incidence rate, 0.51/100 person-years). Of 215 622 patients in the United States, Norway, Denmark, Sweden, and the United Kingdom, death occurred in 1334 (incidence rate, 0.87/100 person-years), and HHF or death in 1983 (incidence rate, 1.38/100 person-years). Use of SGLT-2i, versus other glucose-lowering drugs, was associated with lower rates of HHF (hazard ratio, 0.61; 95% confidence interval, 0.51-0.73; *P*<0.001); death (hazard ratio, 0.49) 95% confidence interval, 0.48-0.60; *P*<0.001) with no significant heterogeneity by country.

CONCLUSIONS: In this large multinational study, treatment with SGLT-2i versus other glucose-lowering drugs was associated with a lower risk of HHF and death, suggesting that the benefits seen with empagliflozin in a randomized trial may be a class effect applicable to a broad population of patients with type 2 diabetes mellitus in real-world practice.

Lower Cardiovascular Risk Associated with SGLT-2i in >400,000 Patients: The CVD-REAL 2 Study.

Kosiborod M¹, Lam CSP², Kohsaka S³, Kim DJ⁴, Karasik A⁵, Shaw J⁶, Tangri N⁷, Goh SY⁸, Thuresson M⁹, Chen H¹⁰, Surmont F¹¹, Hammar N¹², Fenici P¹³; CVD-REAL Investigators and Study Group.

Author information

Abstract

BACKGROUND: Randomized trials demonstrated lower risk of cardiovascular (CV) events with sodium-glucose cotransporter-2 inhibitors (SGLT-2i) in patients with type 2 diabetes (T2D) at high CV risk. Prior real-world data suggested similar SGLT-2i effects in T2D patients with broader risk profile, but focused on heart failure and death, and were limited to US and Europe.

OBJECTIVES: To examine a broad range of CV outcomes in patients initiated on SGLT-2i vs. other glucose lowering drugs (oGLD) across six countries in Asia Pacific, Middle East and North America (NCT02993614).

METHODS: New users of SGLT-2i and oGLD were identified via claims, medical records and national registries in South Korea, Japan, Singapore, Israel, Australia and Canada. Propensity scores for SGLT-2i initiation were developed in each country, with 1:1 matching. Hazard ratios (HRs) for death, hospitalization for heart failure (HHF), death or HHF, MI and stroke were assessed by country and pooled using weighted meta-analysis.

RESULTS: After propensity-matching, there were 235,064 episodes of treatment initiation in each group; ~27% had established CVD. Patient characteristics were well-balanced between groups Dapagliflozin, empagliflozin, ipragliflozin, canagliflozin, tofogliflozin, and luseogliflozin accounted for 75% 9%, 8%, 4%, 3% and 1% of exposure time in the SGLT-2i group, respectively. Use of SGLT-2i vs. oGLDs was associated with lower risk of death (HR 0.51, 95%CI 0.37-0.70; P<0.001), HHF (HR 0.64, 95%CI 0.50-0.82; P=0.001), death or HHF (HR 0.60; 95%CI 0.47-0.76; P<0.001), MI (HR 0.81, 95%CI 0.74-0.88; P<0.001) and stroke (HR 0.68, 95%CI 0.55-0.84; P<0.001). Results were directionally consistent both across countries, and patient subgroups, including those with and without CVD.

CONCLUSIONS: In this large, international study of patients with T2D from the Asia-Pacific, Middle East and North America, initiation of SGLT-2i was associated with a lower risk of CV events, across a broad range of outcomes and patient characteristics.

Lower Risk of Cardiovascular Events and Death Associated with Initiation of SGLT-2 vs DPP-4 inhibitors – Analysis from the CVD-REAL 2 study

Shun Kohsaka¹, Carolyn S. P. Lam², Dae Jung Kim³, Matthew A. Cavender⁴, Alex Z. Fu⁵, Anna Norhammar⁶, Marit E. Jørgensen⁷, Kåre I Birkeland⁸, Reinhard Holl⁹, Josep Franch-Nadal¹⁰, Avraham Karasik¹¹, Jonathan Shaw¹², Navdeep Tangri¹³, Su-Yen Goh¹⁴, Marcus Thuresson¹⁵, Hungta Chen¹⁶, Eric Wittbrodt¹⁷, Johan Bodegård¹⁸, Filip Surmont¹⁹, Niklas Hammar^{6,20}, Peter Fenici²¹, Mikhail Kosiborod²² on behalf of the CVD-REAL Investigators and Study Group

Keio University School of Medicine, Tokyo, Japan;
 National Heart Centre, Singapore and SingHealth Duke-NUS, Singapore;
 Ajou University School of Medicine, Suwon, Republic of Korea;
 University of North Carolina, Chapel Hill, NC, USA;
 Bristol-Myers Squibb and Georgetown University Medical Center, Washington DC, USA;
 Karolinska Institutet, Stockholm, Sweden;
 Steno Diabetes Center, Copenhagen, Gentofte, Denmark and National Institute of Public Health, Southern Denmark University, Denmark;
 University of Ulm, Ulm, Germany;
 Institut Universitari d'investigació en Atenció Primaria (IDIAP Jordi Gol), Barcelona, Spain;
 Tel Aviv University, Ramat Aviv, and Maccabi Healthcare, Israel;
 Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia;
 University of Manitoba, Winnipeg MB, Canada;
 Singapore General Hospital, Singapore;
 Statisticon AB, Uppsala, Sweden;
 AstraZeneca, Gaithersburg, MD, USA;
 AstraZeneca, Oslo, Norway;
 AstraZeneca, Luton, UK;
 AstraZeneca, Gothenburg, Sweden;

21 AstraZeneca, Cambridge, UK; 22 Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA

Shun Kohsaka et al. Published at American Diabetes Association 78th Scientific Sessions (ADA); June 22–26, 2018; Orlando, Florida. 124-LB

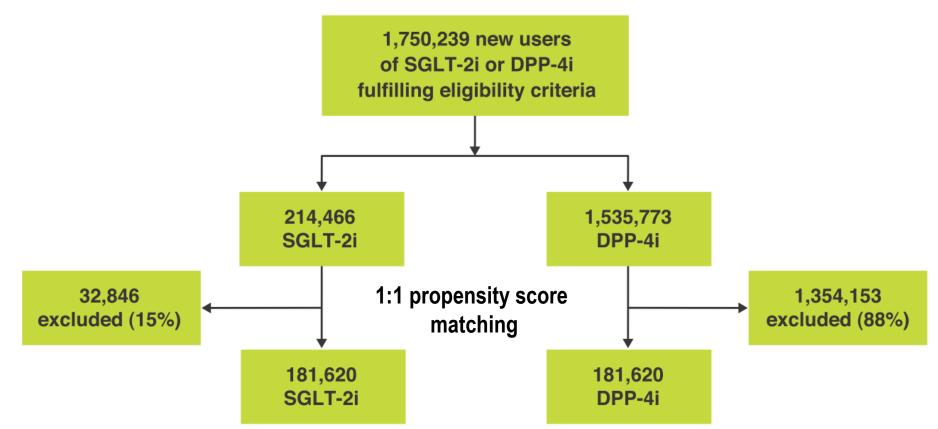
Data Sources

 Deidentified health records from 12 countries, South Korea, Japan, Singapore, Australia, USA, Canada, Denmark, Sweden, Norway, Spain, Israel and Germany, were analyzed

Shun Kohsaka et al. Published at American Diabetes Association 78th Scientific Sessions (ADA); June 22–26, 2018; Orlando, Florida. 124-LB

Study Objectives

- CV outcome trials showed SGLT-2i significantly reduce the risk of major adverse cardiovascular events (MACE) and hospitalizations for heart failure (HHF)^{1,2}; while DPP-4i are largely neutral ³⁻⁵
- This study compared the risk of all-cause death, HFF, MI, and stroke in patients newly initiated on SGLT-2i vs DPP-4i, using real world data from clinical practice from 12 countries.


CV outcome trials: cardiovascular outcome trials; MI: myocardial infarction

1. Zinman B, et al. N Engl J Med 2015;373:2117–28; 2. Neal B, et al. N Engl J Med 2017;377:644–57; 3. Zannad F, et al. Lancet 2015;385:2067–76; 4. Scirica BM, et al. N Engl J Med 2013;369:1317–26; 5. White WB, et al. N Engl J Med 2013;369:1327–35; 6. Persson F, et al. Diabetes Obes Metab 2018;20:344–51

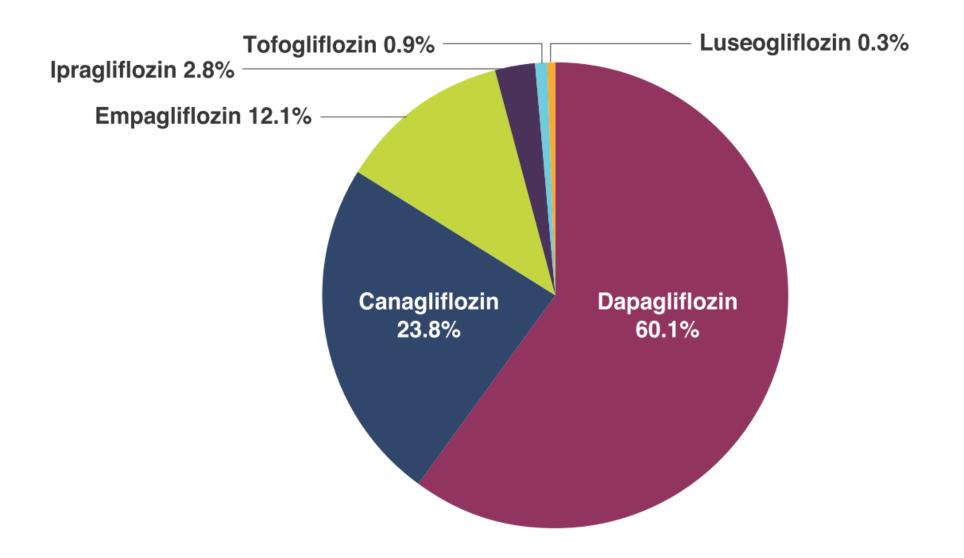
Patient Cohort

 Patients with T2D newly initiated on either SGLT-2i or DPP-4i were selected from each data source between December 2012 and November 2017

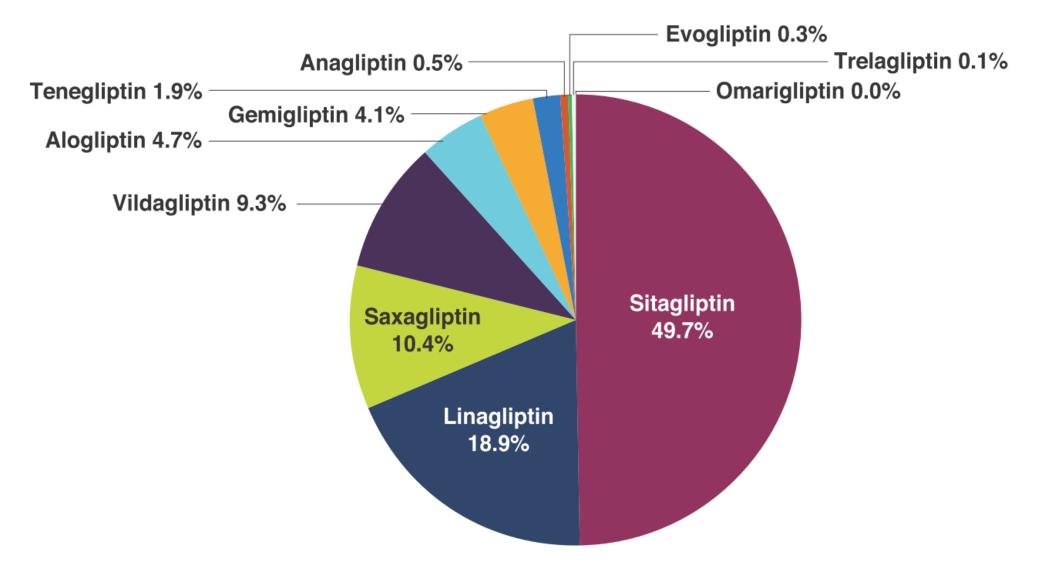
Figure 1. Study flow diagram

Baseline Characteristics (1)

Table 1. Baseline characteristics after propensity-score matching


	SGLT-2i (N=181,620)	DPP-4i (N=181,620)	Standardized difference*
Age, years (SD)	57.6 (11.9)	57.5 (12.7)	1.1%
Women	79,898 (44.0)	79,959 (44.0)	0.1%
Established CVD	52,087 (29.8)	50,221 (28.8)	2.3%
Metformin	140,971 (77.6)	142,342 (78.4)	1.8%
Sulphonylurea	66,007 (36.3)	65,960 (36.3)	0.1%
Thiazolidinedione	14,784 (8.1)	14,480 (8.0)	0.6%
GLP-1 receptor agonist	12,523 (6.9)	11,096 (6.1)	3.2%
Insulin	44,963 (24.8)	43,781 (24.1)	1.5%

Baseline Characteristics (2)


	SGLT-2i (N=181,620)	DPP-4i (N=181,620)	Standardized difference*
Anti-hypertensive therapy	124,772 (68.7)	123,543 (68.0)	1.5%
Loop diuretics	16,102 (8.9)	15,729 (8.7)	0.7%
Thiazide diuretics	26,049 (14.3)	25,780 (14.2)	0.4%
ACE inhibitors	44,745 (24.6)	44,487 (24.5)	0.3%
ARBs	67,816 (37.3)	67,629 (37.2)	0.2%
Statin therapy	114,121 (62.8)	113,272 (62.4)	1.0%

Data are n (%) unless otherwise stated. ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; CVD, cardiovascular disease; GLP-1, glucose-like peptidase-1. *Standardized differences >10% represent a non-negligible difference

Proportion of exposure time in the SGLT-2i class

Proportion of exposure time in the DPP-4i class

All cause death, hospitalization for heart failure (HHF)

A) all-cau	se death	1	SGLT-1i vs DPP-4i P-	<0.001; ł	heterogeneity P<0.001	B) HHF			SGLT-1i vs DPP-4i P<0.00	1; heterogeneity P=0.006
	N	# of events			HR (95% CI)		Ν	# of events	5	HR (95% CI)
Korea	139,554	1,328	HEH		0.77 [0.69, 0.86]	Korea	139,554	1,927	HEH	0.85 [0.78, 0.93]
Japan	19,752	140	⊢		0.52 [0.37, 0.74]	Japan	19,752	140		0.79 [0.57, 1.10]
Singapore	1,100	14			→ 0.80 [0.28, 2.31]	Singapore	1,100	22		→ 0.87 [0.38, 2.01]
Australia	6,993	289	⊢ ∎1		0.48 [0.38, 0.62]	US	102,344	378		0.64 [0.52, 0.79]
US	102,344	905	HEH		0.55 [0.48, 0.62]	Canada	8,346	50		0.50 [0.24, 1.03]
Canada	8,346	141	⊢	÷	0.82 [0.55, 1.24]					
Denmark	15,774	500			0.50 [0.41, 0.60]	Denmark	15,774	260		0.76 [0.59, 0.97]
Sweden	20,442	442			0.71 [0.59, 0.86]	Sweden	20,442	419		0.74 [0.61, 0.90]
Norway	12,398	218	⊢ ∎−	1	0.76 [0.58, 1.00]	Norway	12,398	172		0.62 [0.46, 0.84]
Spain	11,430	177			0.57 [0.42, 0.78]	Spain	11,430	210	F-8-4	0.53 [0.40, 0.70]
Germany	12,084	576			0.58 [0.49, 0.69]	Germany	12,084	248		0.54 [0.42, 0.71]
Israel	6,030	38		-	0.59 [0.31, 1.15]	Israel	6,030	49	·	0.63 [0.35, 1.12]
Total			+		0.61 [0.54, 0.69]	Total			•	0.68 [0.60, 0.78]
		Fa	avor SGLT-2i 🗲	<u> </u>	→ Favor DPP-4i			F	avor SGLT-2i 🗲	Favor DPP-4i
	Haza	rd Ratio: 0	.25 0.50 1	oo	^{2.00} - 39%		Haza	rd Ratio:	0.25 0.50 1.00	^{2.00} - 32%

Myocardial infarction (MI), stroke

D) MI			SGLT-1i vs DPP-4i P=	0.030; heterogeneity P=0.315	E) Stroke			SGLT-1i vs DPP-4i P=	0.001; hete	rogeneity P=0.213
	N	# of events		HR (95% CI)		N	# of events	;		HR (95% CI)
Korea	139,554	701	H-B-	0.92 [0.79, 1.07]	Korea	139,554	2,305	HEH	1	0.83 [0.77, 0.91]
Japan	19,752	21	H	■	Japan	19,752	69	⊢ =		0.64 [0.39, 1.04]
Singapore	1,100	20		→ 0.89 [0.37, 2.15]	Singapore	1,100	6	<		0.20 [0.02, 1.71]
US	102,344	722	н	→ 0.99 [0.86, 1.15]	US	102,344	531			0.86 [0.73, 1.02]
Canada	8,346	56	·	0.56 [0.30, 1.05]	Canada	8,346	25			0.80 [0.32, 2.03]
Denmark	15,774	175	I	0.69 [0.51, 0.94]	Denmark	15,774	173	F		0.78 [0.57, 1.05]
Sweden	20,442	249	H-1	0.99 [0.77, 1.27]	Sweden	20,442	224	F		1.15 [0.88, 1.50]
Norway	12,398	169		0.98 [0.72, 1.33]	Norway	12,398	114	⊢−− ■−−−1	1	0.63 [0.43, 0.92]
Spain	11,430	46	·	0.93 [0.52, 1.66]	Spain	11,430	102	·		0.80 [0.54, 1.19]
Germany	12,084	123		0.63 [0.44, 0.91]	Germany	12,084	170		-	0.98 [0.72, 1.32]
Israel	6,030	16		→ 0.99 [0.37, 2.65]	Israel	6,030	28		-	0.56 [0.26, 1.20]
Total			*	0.90 [0.81, 0.99]	Total			+		0.84 [0.76, 0.93]
		Fa	avor SGLT-2i	Favor DPP-4i			F	avor SGLT-2i 🗲	→ F	avor DPP-4i
	Haza	rd Ratio: 0	.25 0.50 1.0	^{2.00} - 10%		Haza	rd Ratio: 0	0.25 0.50 1.0	2.0	• - 16%

All five outcomes

	Rate per SGLT-2i			HR (95% CI)	
all-cause death # of events: 4768	0.83	1.33	H II -1	0.61 [0.54, 0.69]	- 39%
HHF # of events: 3875	0.80	1.08	H	0.68 [0.60, 0.78]	- 32%
HHF+all-cause death # of events: 7807	^າ 1.55	2.22		0.67 [0.60, 0.74]	- 33%
MI # of events: 2298	0.53	0.58		0.90 [0.81, 0.99]	- 10%
Stroke # of events: 3747	0.82	0.99	HEH	0.84 [0.76, 0.93]	- 16%
		Favor S	GLT-2i 🗲	Favor DPP-4i	
Haz	ard Ratio:	0.25	0.50 1.00	2.00	

Conclusions

- This was a large contemporary analysis of real-world administrative data across 12 countries, with over 360,000 patients
- Initiation of SGLT-2i was associated with a significantly lower risk of all-cause death and HHF compared with initiation of DPP-4i, and a modestly lower risk of MI and stroke
- These findings are complementary to previous observational study results (CVD-REAL Nordic)¹, and clinical trials²⁻⁶ which did not include head-to-head comparisons of SGLT-2i with specific glucose-lowering drug classes

^{1.} Persson F, et al. Diabetes Obes Metab 2018;20:344–51; 2. Zinman B, et al. N Engl J Med 2015;373:2117–28; 3. Neal B, et al. N Engl J Med 2017;377:644–57; 4. Zannad F, et al. Lancet 2015;385:2067–76; 5. Scirica BM, et al. N Engl J Med 2013;369:1317–26; 6. White WB, et al. N Engl J Med 2013;369:1327–35; 6. Persson F, et al. Diabetes Obes Metab 2018;20:344–51

Outline

- **1. Forxiga Clinical Data vs Major Medication**
 - Efficacy of Glycemic Control
 - vs DPP4i / with DPP4i
 - Beyond Glycemic Control

2. Guidelines

3. Special consideration

ARTICLE IN PRESS

+ MODEL

Available online at www.sciencedirect.com

Journal of the Chinese Medical Association xx (2018) 1–34

www.jcma-online.com

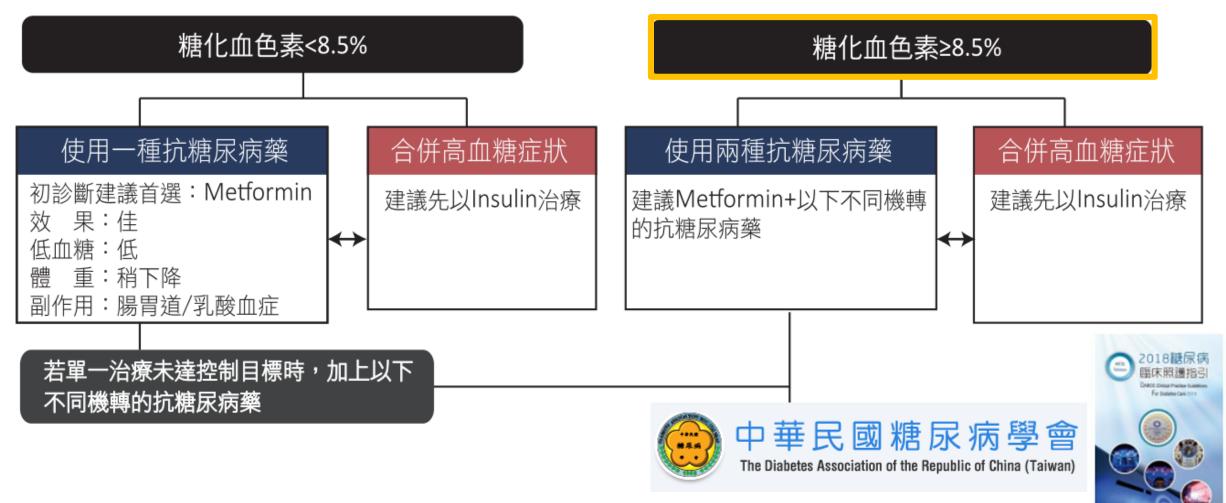
Guidelines

2018 consensus of the Taiwan Society of Cardiology and the Diabetes Association of Republic of China (Taiwan) on the pharmacological management of patients with type 2 diabetes and cardiovascular diseases

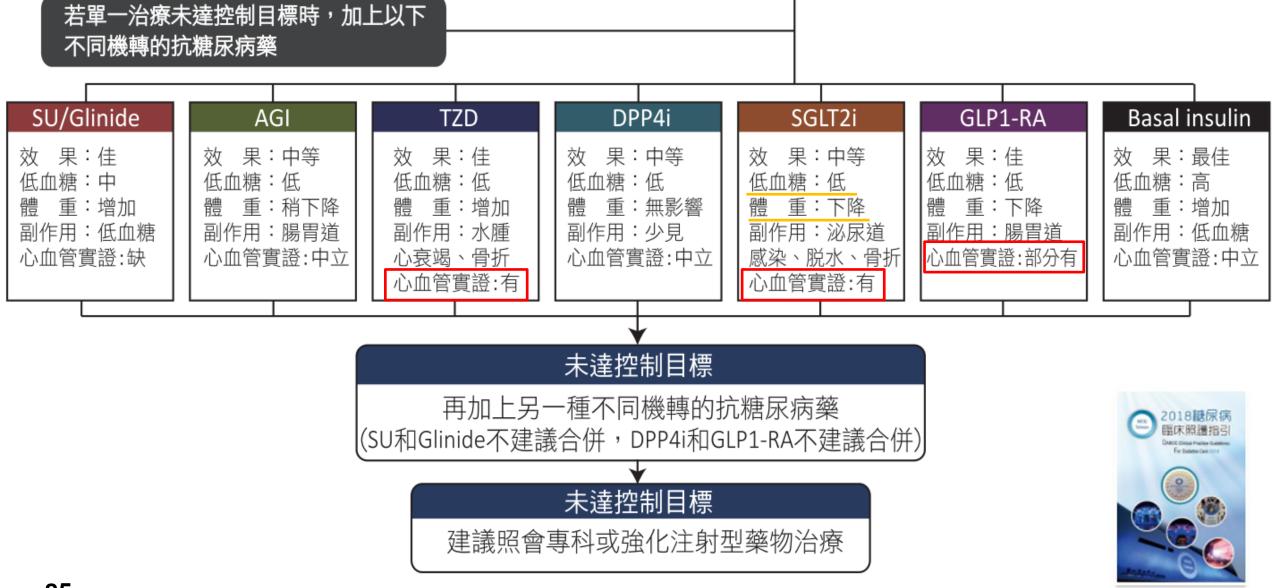
2018 Taiwan Society of Cardiology (TSOC) and the Diabetes Association of Republic of China (DAROC) consensus on T2DM patients with CVD

	Treatment	algorithm in diabetic pa	atients with Hypertensi	on
Target HbA1c Monotherapy <u>Dual therapy</u> Triple therapy Insulin therapy	<7% Metformin Metformin + <u>SGLT-2 i</u> Metformin + SGLT-2 i + GLP-1 RA ^a Basal insulin or premixed	Metformin + SGLT-2 + TZD ^b insulin or basal bolus insulin, p	+ DPP-4 i	T-2 i Metformin + SGLT-2 i + SU or Glinide or AGI
	Treatment algori	thm in diabetic patients	s with Coronary Heart I	Disease
Target HbA1c Monotherapy <u>Dual therapy</u> Triple therapy Insulin therapy	<7% Metformin Metformin + TZD ^a Metformin + TZD ^a + SGLT-2 Basal insulin or premixed insul	Metformin + SGLT- i Metformin + TZD ^a in or basal bolus insulin, plus oral	+ GLP-1 RAs ^b Metform	$rac{1}{1}$ min + GLP-1 RA ^b min + SGLT-2 i + GLP-1 RAs ^b
	Treatment	algorithm in diabetic p	atients with stage 3 Ck	(D
Target HbA1c Monotherapy Dual therapy Triple therapy	<7% Metformin Metformin + SGLT-2 i Metformin + SGLT-2 i + GLP-1 RA ^a	Metformin + SGLT-2 i + TZD ^b	Metformin + SGLT-2 i + DPP-4 i	Metformin + SGLT-2 i + SU or Glinide or AGI
Insulin therapy	Basal insulin or premixed insu	lin or basal bolus insulin, plus ora	l agents	

J Chin Med Assoc. 2018 Feb 13. pii: S1726-4901(18)30018-2.


2018 Taiwan Society of Cardiology (TSOC) and the Diabetes Association of Republic of China (DAROC) consensus on T2DM patients with CVD

Treatment algorithm in diabetic patients with Stroke						
Target HbA1c	<7%					
Monotherapy	Metformin					
Dual therapy	Metformin $+$ TZD ^a	Metformin + GLP-1 RA^{b}	Metfor	rmin + SGLT-2 i		
Triple therapy	Metformin $+$ TZD ^a $+$ GLP-1	RA ^b Metformin + TZD ^a + SGLT-		$rmin + GLP-1 RA^{b} + SGLT-2 i$		
Insulin therapy Basal insulin or premixed insulin or basal bolus insulin, plus oral agents						
Target Ub 4.1a		gorithm in diabetic patients with H	eart failure			
Target HbA1c	<8%					
Monotherapy	SGLT-2 i or metformin					
Monotherapy	SGLT-2 i or metformin SGLT-2 i + metformin					
Monotherapy Dual therapy	SGLT-2 i + metformin	GLT-2 i + metformin	SGLT-2 i + metformi	n SGLT-2 i + metformin		
Monotherapy Dual therapy Triple therapy	SGLT-2 i + metformin SGLT-2 i + metformin SG		SGLT-2 i + metformit + SU or AGI	n SGLT-2 i + metformin + Glinide		



2018 DAROC Clinical Practice Guidelines for Diabetes Care

第2型糖尿病人高血糖的處理流程圖

2018 DAROC Clinical Practice Guidelines for Diabetes Care

85 DAROC Clinical Practice Guidelines for Diabetes Care- 2018, Taiwan, Diabetes Association of the R.O.C., 2018

Antihyperglycemic Therapy in Adults with T2DM

At diagnosis, initiate lifestyle management, set A1C target, and initiate pharmacologic therapy based on A1C:

	A1C is less than 9%, cons	ider Monotherapy.
+-(A1C is greater than or eq	ual to 9%, consider Dual Therapy.
+		ual to 10%, blood glucose is greater than or equal to 300 mg/dL, mptomatic, consider Combination Injectable Therapy (See Figure 8.2)
Мо	notherapy	_ifestyle Management + Metformin
	Initiate metformin ther	rapy if no contraindications* (See Table 8.1)
	A1C at target after 3 months of monotherapy?	Yes: - Monitor A1C every 3–6 months No: - Assess medication-taking behavior - Consider Dual Therapy
Du	al Therapy	_ifestyle Management + Metformin + Additional Age

Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S73-S85

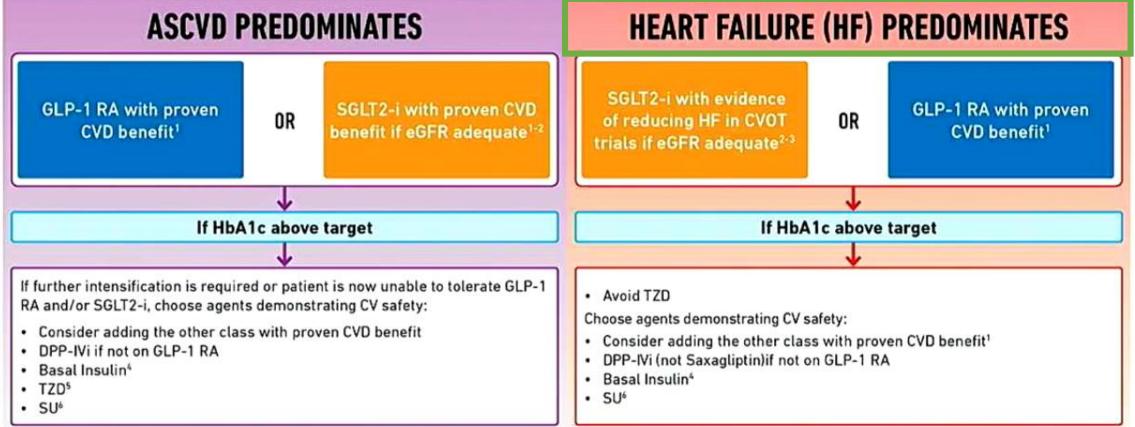
2018 ADA recommend agents with CV benefit for second-line therapy on patients with **ASCVD**

ASCVD? Yes:	 Add agent proven to reduce major adverse cardiovascular events and/or cardiovascular mortality (see recommendations with * on p. S75 and Table 8.1) 	
No:	 Add second agent after consideration of drug-specific and patient factors (See Table 8.1) 	effects
	erotic cardiovascular disease ary heart disease, cerebrovascular disease, or peripheral arterial	THE JOURNAL OF CLINICAL AND APPLIED RESEARCH AND EDUCATION NUMBER OF CLINICAL AND APPLIED RESEARCH AND APPLIED RESEARCH AND EDUCATION NUMBER OF CLINICAL AND APPLIED RESEARCH AND APPLIED RES
A1C at target after 3 months	Yes: - Monitor A1C every 3–6 months	AMERICAN DIABETES ASSOCIATION STANDARDS OF

2018 ADA recommend agents with CV benefit for second-line therapy on patients with **ASCVD**

ASCVD? Yes	 Add agent proven to reduce major adverse cardiovascular events and/or cardiovascular mortality (see recommendations with * on p. S75 and Table 8.1) 	
No	 Add second agent after consideration of drug-specif and patient factors (See Table 8.1) 	c effects
	clerotic cardiovascular disease onary heart disease, cerebrovascular disease, or peripheral arterial	THE JOURNAL OF CLINICAL AND APPLIED RESEARCH AND EDUCATION NUMBER OF CLINICAL AND APPLIED RESEARCH AND APPLIED RESEARCH AND APPLIED RESEARCH AND EDUCATION NUMBER OF CLINICAL AND APPLIED RESEARCH AND APPLIED RES
	Yes: - Monitor A1C every 3–6 months	AMERICAN DIABETES ASSOCIATION
A1C at target after 3 month		STANDARDS OF

Principles of the AACE/ACE Comprehensive Type 2 Diabetes Management Algorithm


1.	Lifestyle modification underlies all therapy (e.g. weight, exercise, sleep, etc.)							
2.	Avoid hypoglycemia	AACE/ACE Comprehen	sive 2 0					
3.	Avoid weight gain	Type 2 Diabetes Management Algorith						
4.	Individualize all glycemic targets (A1c, FPG, PPG)							
5.	Optimal A1c is \leq 6.5%, or as close to normal as is safe and achievable Therapy choices are affected by initial A1c, duration of diabetes, and obesity status							
6.								
7.	Choice of therapy reflects cardiac, cerebrovascula	Choice of therapy reflects cardiac, cerebrovascular, and renal status						
8.	Comorbidities must be managed for comprehensive	ve care						
9.	Get to goal as soon as possible – adjust at \leq 3 mon	ths until at goal						
10.	Choice of therapy includes ease of use and afforda	ability						

90

2018 ADA/EASD consensus

Step 1: Assess cardiovascular disease

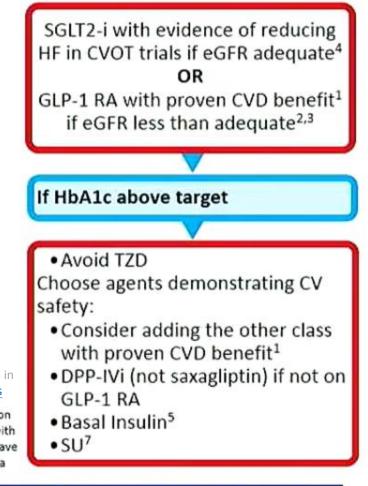
Presence of cardiovascular disease is compelling indication

1. SGLT2-i = Empagliflozin preferred, GLP1-RA = Liraglutide preferred. Proven CVD benefit means it has label indication of reducing CVD events please see hierarchy of evidence in manuscript for CVD benefits for agents within the GLP-1 RA and SGLT2-i class, 2. Be aware that SGLT2-i vary by region and individual agent with regard to indicated level of eGFR for initiation and continued use. 3. Both Empagliflozin and Canaeliflozin have shown reduction in HF in CVOT trials, 4. Degludec or U100 Glargine have demonstrated CVD safety, 5. Low dosi American Diabetes Association, 78th Scientific Sessions, Orlando, FL, June 22-28, 2018. Session: Management of Hyperglycemia in Type 2 Diabetes—Draft ADA/EASD Consensus Report 2018. Access from: https://professional.diabetes.org/2018EASDconsensus

American Diabetes Association.

If heart failure predominates, consider SGLT2 inhibitor as part of treatment strategy

Rationale: Patients with T2D are at increased risk for heart failure with reduced or preserved ejection fraction

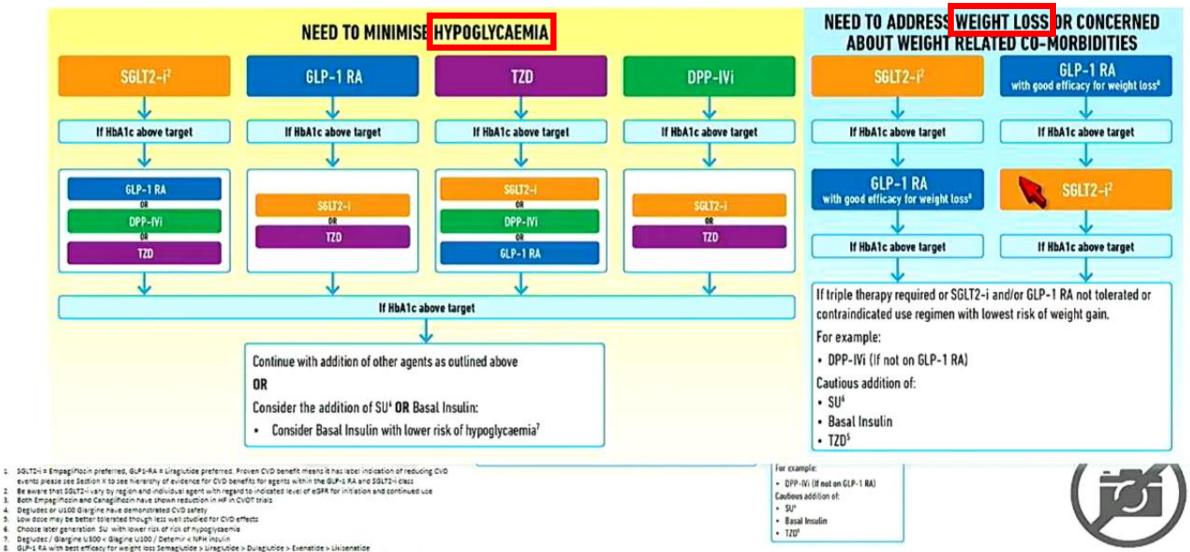

Significant, consistent reductions in hospitalization for heart failure have been seen in SGLT2 inhibitor trials

Caveat: trials were not designed to adjudicate heart failure

Majority of patients did not have clinical heart failure at baseline

American Diabetes Association, 78th Scientific Sessions, Orlando, FL, June 22-28, 2018. Session: Management of Hyperglycemia in Type 2 Diabetes—Draft ADA/EASD Consensus Report 2018. Access from: <u>https://professional.diabetes.org/2018EASDconsensus</u>

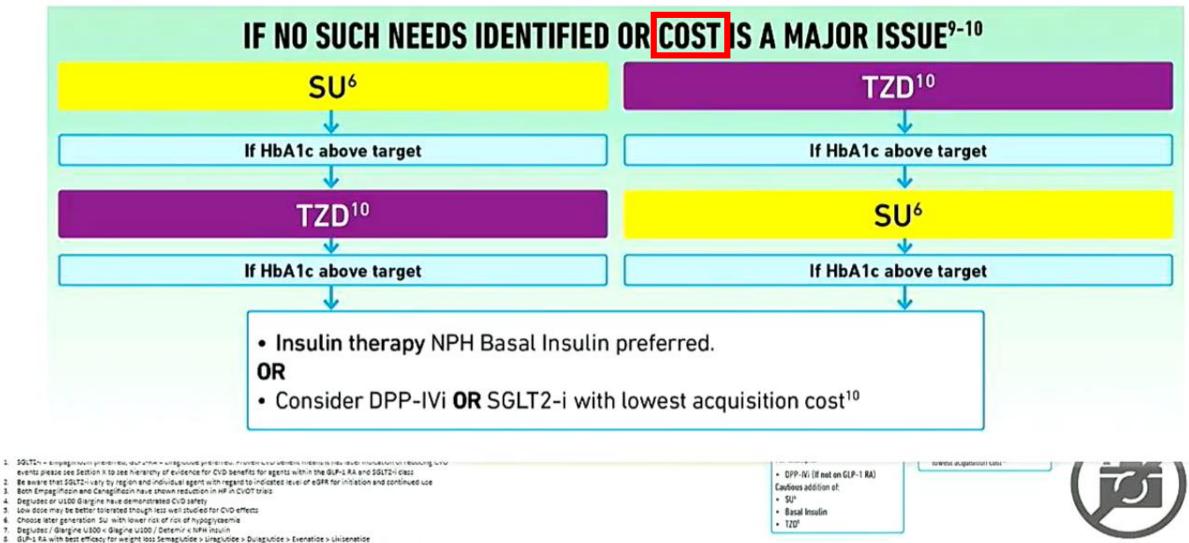
1. SGLT2-i = Empagliflozin preferred, GLP1-RA = Liraglutide preferred. Proven CVD benefit means it has label indication of reducing CVD events please see Section X to see hierarchy of evidence for CVD benefits for agents within the GLP-1 RA and SGLT2-i class, 2. Be aware that SGLT2-i vary by region and individual agent with regard to indicated level of eGFR for initiation and continued use, 3. Caution with GLP1-RA in End Stage Renal Disease, 4. Both empagliflozin and canagliflozin have shown reduction in HF in CVOT trials, 5. Degludec or U100 Glargine have demonstrated CVD safety, 7.Choose later generation SU to lower risk of hypoglycaemia


European Association for the Study of Diabetes

EAS

ANTIHYPERGLYCEMIC MEDICATION IN TYPE 2 DIABETES: OVERALL APPROACH

- If no specific co-morbidities (i.e. established CvD), low risk of hypoplycsemia and lower priority to avoid weight gain or no weight related co-morbidities; using the algorithm to minimise medication costs.
- 10. Consider country and region specific cost of drugs. In some countries T2D relatively more expensive and DPP-IVI relatively cheaper


American Diabetes Association, 78th Scientific Sessions, Orlando, FL, June 22-28, 2018. Session: Management of Hyperglycemia in Type 2 Diabetes—Draft ADA/EASD Consensus Report 2018. Access from: <u>https://professional.diabetes.org/2018EASDconsensus</u>

American Diabetes Association.

ANTIHYPERGLYCEMIC MEDICATION IN TYPE 2 DIABETES: OVERALL APPROACH

- If no specific co-morbidities (i.e. established CVD), low risk of hypoplyceemia and lower priority to avoid weight gain or no weight related co-morbidities: using the algorithm to minimise medication costs
- 10. Consider country and region specific cost of drugs. In some countries T2D relatively more expensive and DPP-IV/ relatively cheaper

American Diabetes Association, 78th Scientific Sessions, Orlando, FL, June 22-28, 2018. Session: Management of Hyperglycemia in Type 2 Diabetes—Draft ADA/EASD Consensus Report 2018. Access from: <u>https://professional.diabetes.org/2018EASDconsensus</u>

Draft Consensus Recommendation:

For patients with chronic kidney disease (CKD) and high cardiovascular risk, it is safe to use <u>GLP-1 receptor agonists</u> and <u>SGLT2 inhibitors</u>, albeit with dose reduction for some medications.

Several of these medications have demonstrated renal benefit and cardiovascular benefit and should be considered as part of treatment

American Diabetes Association, 78th Scientific Sessions, Orlando, FL, June 22-28, 2018. Session: Management of Hyperglycemia in Type 2 Diabetes—Draft ADA/EASD Consensus Report 2018. Access from: https://professional.diabetes.org/2018EASDconsensus

Outline

- **1. Forxiga Clinical Data vs Major Medication**
 - Efficacy of Glycemic Control
 - vs DPP4i / with DPP4i
 - Beyond Glycemic Control
- 2. Guidelines
- 3. Special consideration

Safety Profile from RCT Urinary Tract and Genital Infections

		Placebo-cont	rolled pool
The safety of dapagliflozin 10 mg as assessed in a pooled	Events (%)	Dapagliflozin 10 mg (n=2360)	Placebo (n=2295)
analysis of 13 placebo- controlled studies (>2,300 patients)	UTIs	110 (4.7)	81 (3.5)
patiente)	Genital infections*	130 (5.5)	14 (0.6)

*Genital infection includes the preferred terms: Vulvovaginal mycotic infection, vaginal infection, balanitis, genital infection fungal, vulvovaginal candidiasis, vulvovaginitis, balanitis candida, genital candidiasis, genital infection, genital infection male, penile infection, vulvitis, vaginitis bacterial and vulval abscess.UTI: urinary tract infections; RCT: randomised clinical trial

FORXIGA® Summary of product characteristics <u>http://www.medicines.org.uk/EMC/medicine/27188</u> (Last accessed April 2015)

Diabetic ketoacidosis (DKA)

Incidence of DKA with SGLT₂ inhibitors

AACE/ACE Position Statement

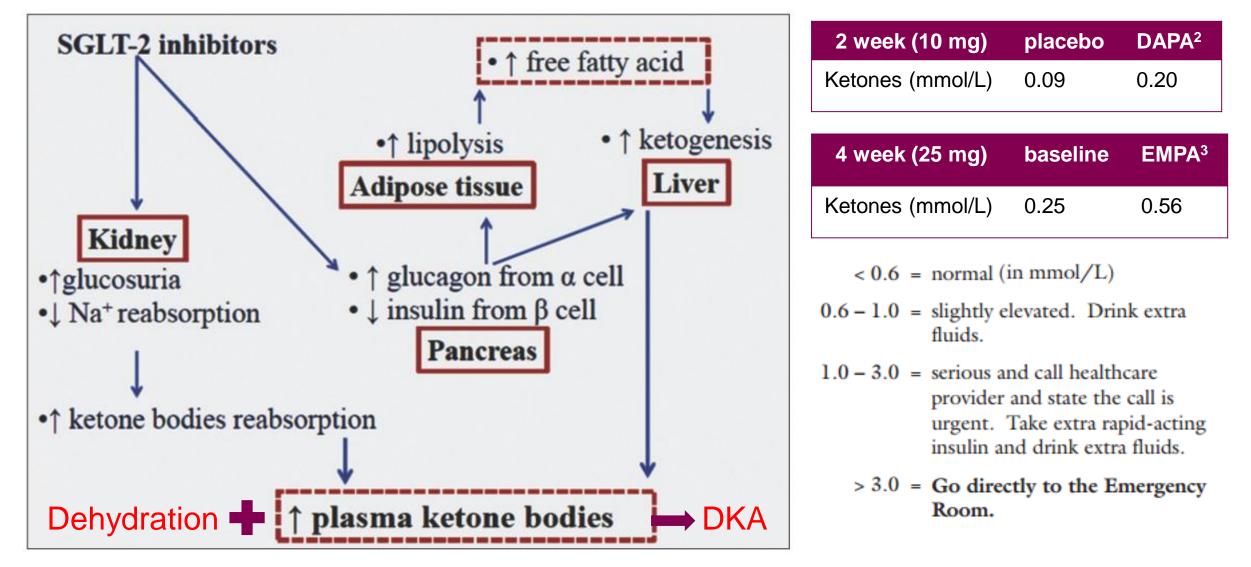
103

AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY POSITION STATEMENT ON THE ASSOCIATION OF SGLT-2 INHIBITORS AND DIABETIC KETOACIDOSIS

Yehuda Handelsman, MD, FACP, FNLA, FACE, Co-Chair¹; Robert R. Henry, MD, FACE, Co-Chair²; Zachary T. Bloomgarden, MD, MACE³; Sam Dagogo-Jack, MD, DM, FRCP, FACE⁴; Ralph A. DeFronzo, MD, BMS, MS, BS⁵; Daniel Einhorn, MD, FACP, FACE⁶; Ele Ferrannini, MD⁷; The incidence of DKA in clinical trials of SGLT₂ inhibitors with T2DM was 0.2-0.8 cases per 1,000 patient-years¹

The estimated incidence of DKA with dapagliflozin was 0.02%²

	Placebo/comparator-controlled 21-study pool							
Potential events of DKA	Dapagliflozin total (N = 5936; 6247.2 patient-years)							
SAE of DKA, n	1							
AE of ketonuria, n	2							
AE of metabolic acidosis, n	1							
Estimated incidence of DKA, % (95% CI)	0.02 (0.004, 0.059)							
Estimated incidence of DKA/metabolic acidosis, % (95% CI)	0.03 (0.010, 0.089)							


The incidence of acute pancreatitis:

- Sitagliptin is 1.1 cases per 1000 person-year³
- Linagliptin is 1.5 cases per 1000 patient-year⁴

DKA: diabetic ketoacidosis 1. Endocr Pract. 2016 Jun;22(6):753-62. 2. Diabetes Obes Metab. 2017 Sep 26. doi: 10.1111/dom.13124. 3. N Engl J Med. 2015 Jul 16;373(3):232-42. 4. Ther Adv Drug Saf. 2014 Jun; 5(3): 138–146.

AstraZeneca do not recommend the use of dapagliflozin/metformin XR in any manner other than T2DM

Mechanism of ketosis with SGLT₂ inhibitors¹

DAPA: dapagliflozin, EMPA: empagliflozin

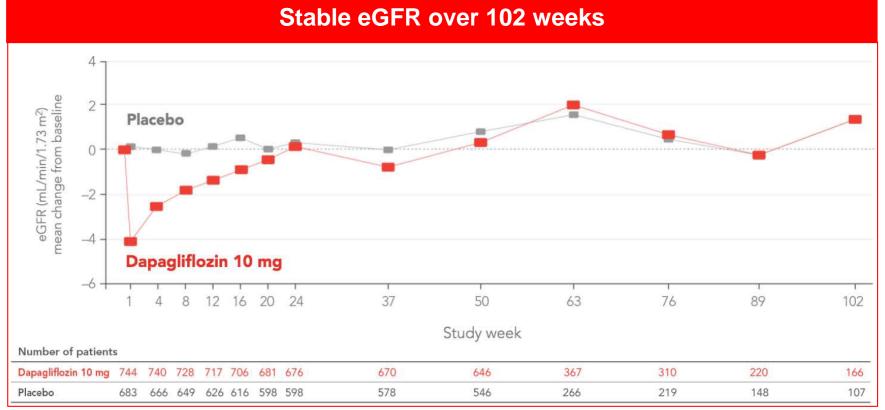
1. Singh AK et al. Indian J Endocrinol Metab. 2015 Nov-Dec;19(6):722-30. 2. Daniele G et al. Diabetes Care. 2016 Nov;39(11):2036-2041.

3. Ferrannini E et al. Diabetes. 2016 May;65(5):1190-5.

AstraZeneca do not recommend the use of dapagliflozin/metformin XR in any manner other than T2DM

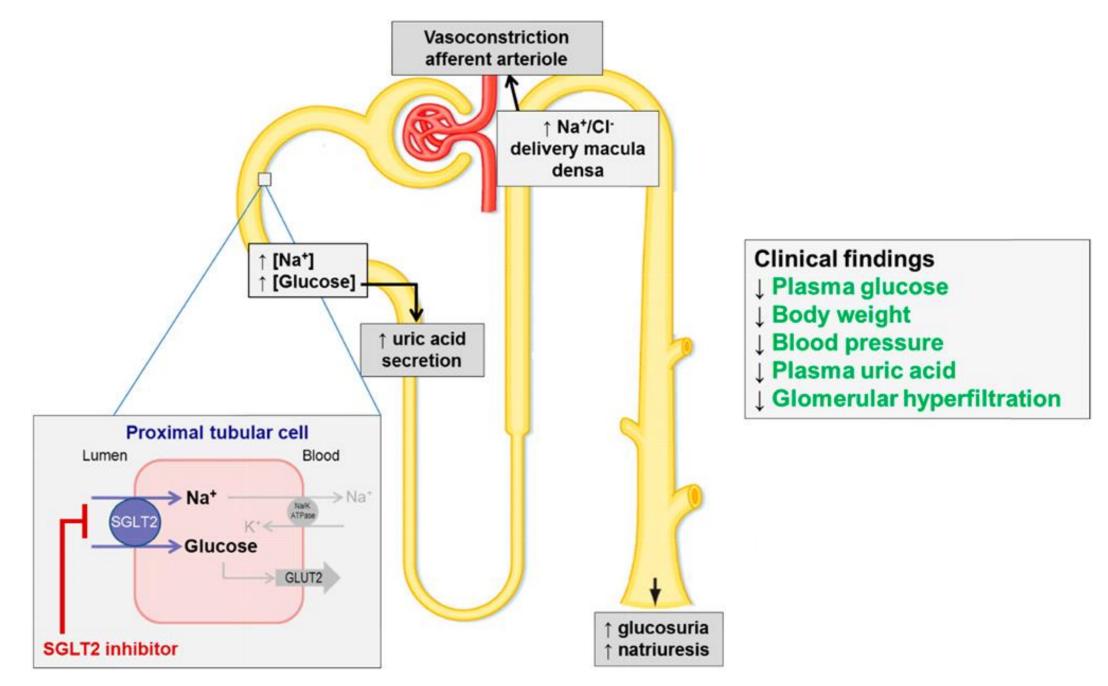
How minimize the risk of DKA

To minimize the risk of DKA associated with SGLT-2 inhibitors, AACE recommends the following¹:

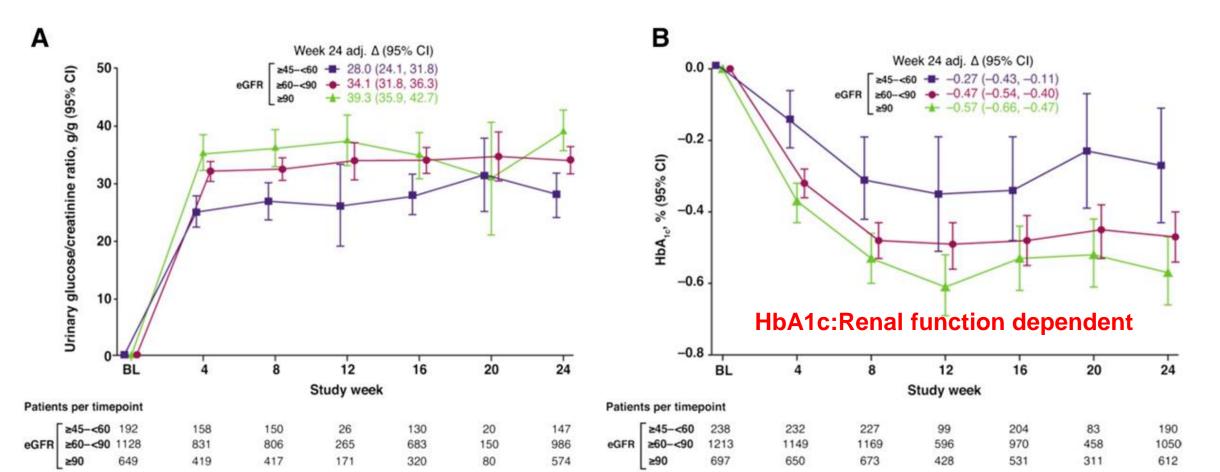

- 1. Consider stopping the SGLT-2 inhibitor at least 24 hours prior to elective surgery, planned invasive procedures, or anticipated severe stressful physical activity such as running a marathon
- 2. For emergency surgery or any extreme stress event, the drug should be stopped immediately

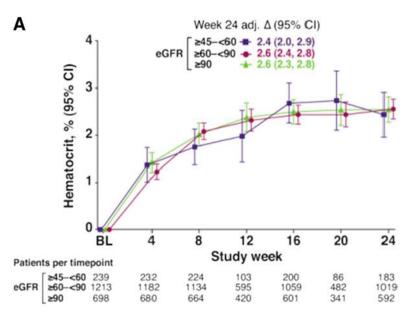
Almost all cases of SGLT-2 inhibitor–associated DKA occurred in patients challenged with metabolically stressful events: surgery, extensive exercise, myocardial infarction, stroke, severe infections, prolonged fasting

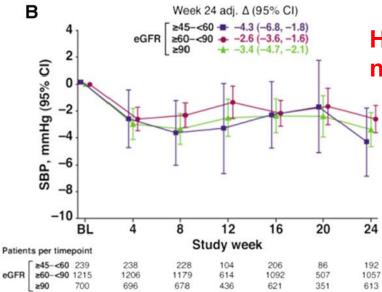
- **3.** Avoid stopping insulin or decreasing the dose <u>excessively</u>
- 4. Patients taking SGLT-2 inhibitors should avoid excess alcohol intake and very-lowcarbohydrate/ketogenic diets
- Routine measurement of urine ketones is not recommended during use of SGLT-2 inhibitors because this measurement can be misleading. Instead, measurement of blood ketones is preferred for diagnosis of DKA in <u>symptomatic patients</u>


DKA symptoms: abdominal pain, nausea, vomiting, fatigue, and dyspnea

Forxiga no Detrimental Effect on Renal Function over 102 Weeks

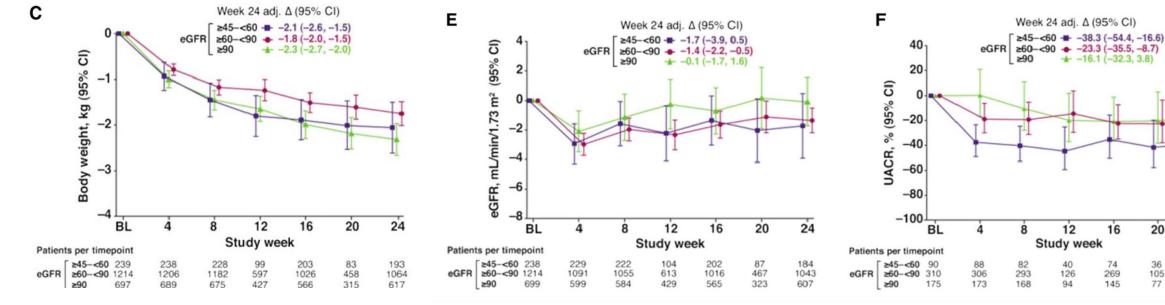

- The efficacy of Forxiga is dependent on renal function
- Overall, patients taking Forxiga showed stable eGFR over 2 years
- Forxiga does not appear to be associated with deterioration in renal function over time up to 4 years
- All SGLT2i show a reduction in efficacy in patients with reduced renal function


Kohan DE, et al. J Nephrol 2016. DOI 10.1007/s40620-016-0261-1 FORXIGA. Summary of product characteristic, 2016. Del Prato S, et al. Diabetes Obes Metab 2015;17:581-90 Del Prato S, et al. Diabetes Obes Metab 2015;17:581-90 (Supplementary data) Inzucchi SE, et al. Diabetes Care 2015;38:140-9



Differential Effects of Dapagliflozin on Cardiovascular Risk Factors at Varying Degrees of Renal Function

Sergei Petrykiv,* C. David Sjöström,[†] Peter J. Greasley,[†] John Xu,[‡] Frederik Persson,[§] and Hiddo J.L. Heerspink*



Hematocrit, BP, BW, MAU improvement: not renal function dependent

261

105

Case sharing

Patient 2 profile

- Female
- 64 y/o
- T2DM: 8 years
- NDR, ACR 23 mg/gCr

[GLU累積報告內容(24) Glucose 🗸 🛄 🚳 點選圖示查詢UpToDate/Micromedex]												
日期	<u>Glucose</u>	<u>Glu,1hrPC</u>	<u>Glu,2hrPC</u>	<u>Glu,3hrPC</u>	HbA1c	<u>C-PEPTIDE</u>						
2016-10-15 08.53	198	-	-	-	-							
2016-10-15 09.53	-	-	-	-	6.4							
2017-01-14 08.13	174	-	-	-	-							
2017-01-14 08.45	-	-	-	-	6.6							
2017-04-22 07.55	198	-	-	-	-							
2017-04-22 08.33	-	-	-	-	7.5							
2017-07-15 08.06	203	-	-	-	-							
2017-07-15 08.45	-	-	-	-	6.9	1J+1D+3M						
2017-10-17 09.16	-	-	-	-	6.2							
2017-10-17 09.19	136	-	-	-	-							
2018-01-15 08.29	194	-	-	-	-							
2018-01-15 10.24	-	-	-	-	6.7 🔶	• 0.5F+1D+3M						
2018-04-14 10.10	-	-	-	-	6.0							
2018-04-14 10.46	131	-	-	-	-							
2018-07-11 09.46	130	-	-	-	-							

[查詢條件] 其他時間範圍: 兩年內 ✔ 累積報告類型: (累積)SMAC ✔																								
[CHEMN累積報告內容(24) TP																								
日期	<u>tp a</u>	LB	<u>CA</u>	<u>CHOL</u>	<u>BUN</u>	<u>ua</u>	<u>CREA</u>	<u>BILIT</u>	<u>ALKP</u>	<u>LDH</u>	<u>ALT</u>	<u>AST</u>	<u>na</u>	K	<u>CL</u>	<u>glu</u>	<u>IP C</u>	<u>k gg</u>	<u>r HDLC</u>	<u>LDLC</u>	<u>RISKF</u>	<u>tg</u>	<u>C02</u>	<u>DBILI I</u>
16-10-15 08.53	-	-	-	160	-	5.8	0.74	-	-	-	162	-	-	-	-	-	-		-	97	-	207	-	-
16-11-10 15.10	-	-	-	-	-	-	-	1.02	95	-	208	121	-	-	-	-	-		-	-	-	-	-	-
17-01-21 09.21	-	-	-	-	-	-	-	-	-	-	113	52	-	1 L	_1[D +3	2 1 1	-	-	-	-	-	-	-
17-07-15 08.06	-	-	-	-	-	-	-	-	-	-	170	77	-	131	- 11	-	-	-	-	-	-	-	-	-
17-10-17 09.19	-	-	-	-	-	-	-	0.95	84	-	120	66	-	-	-	-	-	- 24	-	-	-	-	-	0.33
18-01-15 08.29	-	-	-	176	-	-	0.71	-	-	-	124	- (0.5	F+	-1D	+31	Л	-	104	-	253	-	-
18-04-14 10.46	-	-	-	161	-	-	0.66	-	-	-	52	-		-	-	-	-		•	105	-	<mark>192</mark>	-	-
18-04-17 11.11	-	-	<mark>9.3</mark>	-	-	-	-	-	-	-	-	-	138	<mark>3</mark> 4.4	-	-	-		-	-	-	-	-	-
18-07-11 09.46	-	-	-	-	-	-	-	-	-	-	27	-	-	-	-	-		-	-	-	-	-	-	-

BW decrease 4 kg

Effects of Dapagliflozin on Body Composition and Liver Tests in Patients with Nonalcoholic Steatohepatitis Associated with Type 2 Diabetes Mellitus: A Prospective, Open-label, Uncontrolled Study.

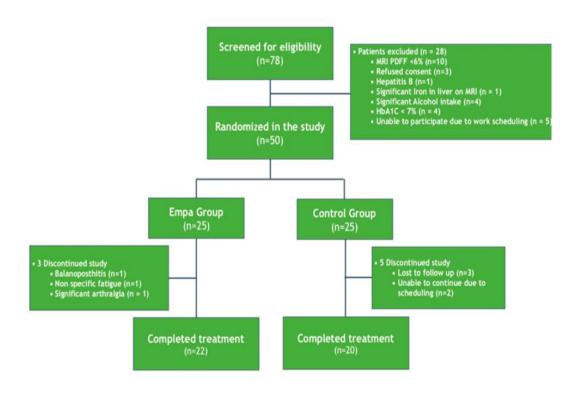
<u>Tobita H</u>¹, <u>Sato S</u>¹, <u>Miyake T</u>¹, <u>Ishihara S</u>¹, <u>Kinoshita Y</u>¹.

Author information

1 Department of Gastroenterology and Hepatology, Shimane University Faculty of Medicine, Izumo, Japan.

Abstract

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is an active form of nonalcoholic fatty liver disease. Risk factors for NASH include type 2 diabetes mellitus (T2DM) and obesity. Sodium-glucose cotransporter 2 (SGLT2) inhibitors used to treat T2DM prevent glucose reabsorption in the kidney and increase glucose urinary excretion. Dapagliflozin is a potent, selective SGLT2 inhibitor that reduces hyperglycemia in patients with T2DM and has been demonstrated to reduce some complications associated with NASH in rodent models.


OBJECTIVE: To assess the efficacy and safety profile of dapagliflozin for the treatment of NASH-associated with T2DM.

METHODS: In this single-arm, nonrandomized, open-label study, 16 patients with percutaneous liver biopsy-confirmed NASH and T2DM were enrolled to be prescribed dapagliflozin 5 mg/d for 24 weeks. Of these, 11 patients were evaluable. Patients with chronic liver disease other than NASH were excluded. Body composition, laboratory variables related to liver tests and metabolism, and glucose homeostasis were assessed at baseline and periodically during the study. Changes from baseline were evaluated with the Wilcoxon signed-rank test.

RESULTS: Administration of dapagliflozin for 24 weeks was associated with significant decreases in body mass index (P < 0.01), waist circumference (P < 0.01), and waist-to-hip ratio (P < 0.01). Changes in body composition were driven by reductions in body fat mass (P < 0.01) and percent body fat (P < 0.01), without changes in lean mass or total body water. Liver tests (ie, serum concentrations of aspartate aminotransferase, alanine aminotransferase, ferritin, and type IV collagen 7S) also significantly improved during the study. Insulin concentrations decreased (P < 0.01 by Week 24) in combination with significant reductions in fasting plasma glucose (P < 0.01) and glycated hemoglobin (P < 0.01) levels and increases in adiponectin (P < 0.01) levels from Week 4 onward.

CONCLUSIONS: Dapagliflozin was associated with improvements in body composition, most likely a reduction in visceral fat, which occurred together with improvements in liver tests and metabolic variables in patients with NASH-associated with T2DM. UMIN Clinical Trial Registry identifier: UMIN000023574.

Effect of Empagliflozin on Liver Fat in Patients With Type 2 Diabetes and Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial (E-LIFT Trial)

N=50 Empa 10mg vs control 20 wks MRI-PDFF

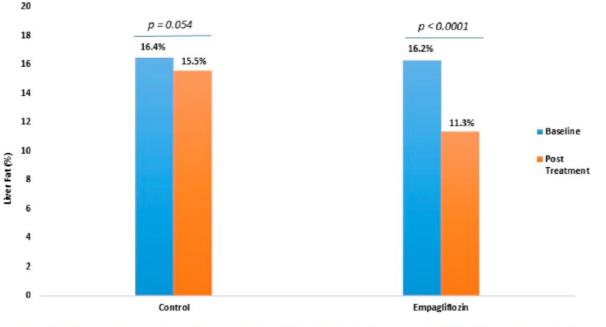


Figure 2—Baseline and posttreatment changes in liver fat in the empagliflozin and control groups as assessed by MRI-PDFF. Change in liver fat relative to baseline as assessed by MRI-PDFF. A significant difference was found in change in liver fat between the study groups (P < 0.0001).

Comparison of Ipragliflozin and Pioglitazone Effects on Nonalcoholic Fatty Liver Disease in Patients With Type 2 Diabetes: A Randomized, 24-Week, Open-Label, Active-Controlled Trial.

Ito D^{1,2}, Shimizu S², Inoue K^{3,2}, Saito D^{3,2}, Yanagisawa M^{2,4}, Inukai K⁵, Akiyama Y², Morimoto Y², Noda M³, Shimada A³.

Author information

Abstract

OBJECTIVE: To compare the efficacy of ipragliflozin versus pioglitazone in patients with type 2 diabetes complicated by nonalcoholic fatty liver disease (NAFLD).

RESEARCH DESIGN AND METHODS: In this open-label, randomized, active-controlled trial, we randomly assigned 66 patients with type 2 diabetes and NAFLD to receive ipragliflozin 50 mg (n = 32) or pioglitazone 15-30 mg (n = 34) orally once daily. The primary outcome was a change from baseline in the liver-to-spleen attenuation ratio (L/S ratio) on computed tomography at week 24.

RESULTS: At week 24, the mean \pm SD L/S ratio had increased by 0.22 (from 0.80 \pm 0.24 to 1.00 \pm 0.18) in the ipragliflozin group and 0.21 (from 0.78 \pm 0.26 to 0.98 \pm 0.16) in the pioglitazone group (*P* = 0.90). Serum aspartate and alanine aminotransferase levels, HbA_{1c}, and fasting plasma glucose were similarly reduced in the two treatment groups. Nevertheless, body weight and visceral fat area showed significant reductions only in the ipragliflozin group compared with the pioglitazone group (*P* < 0.0001 and *P* = 0.0013, respectively). There were no serious adverse events in either group.

CONCLUSIONS: Compared with pioglitazone, ipragliflozin exerts equally beneficial effects on NAFLD and glycemic control during the treatment of patients with type 2 diabetes complicated by NAFLD. Furthermore, ipragliflozin significantly reduced body weight and abdominal fat area.

Paradigm shift?

Perhaps the question should be: Which medicine is better before metformin use?