Role of DPP4i in Diabetic Kidney: Manage Blood Glucose with Renal Protection and Beta Cell Conservation

> 高雄長庚醫院腎臟科 楊智超 107-04-01

Outlines

- New era in the treatment of T2DM
- Diabetic kidney disease(DKD) and CVD
- Intensive Diabetic treatment: focus on both quantity and quality and the efficacy of DPP4i
- Save Kidneys = Save Lives, A nephrologist's perspective
- Pleiotropic effects

Outlines

- New era in the treatment of T2DM
- Diabetic kidney disease(DKD) and CVD
- Intensive Diabetic treatment: focus on both quantity and quality and the efficacy of DPP4i
- Save Kidneys = Save Lives, A nephrologist's perspective
- Pleiotropic effects

可歸因的死亡人口

Lo et al, PHM 2017

The efficacy of intensive sugar control							
With SU/insulin therapy							
Large Clinical Type 2 Diabetes Trials							
new DM old DM							
	UKPDS (n=3867)	ADVANCE (n=11,140)	ACCORD (n=10,251)	VADT (n=1,791)			
Duration of diabetes	0	8	10	11.5			
Mean age (yr)	53	66	62	60			
History of CVD	-	32%	34%	40%			
Achieved A1c Conventional Intensive	7.9% 6.2%	7.3% 6.5%	7.5% 6.4%	8.4% 6.9%			

Holman RR et al. *NEngl J Med*. 2008;359:1577. DCCT Research Group. N Engl J Med 1993;329;977. Nathan DM et al. *NEngl J Med*. 2005;353:2643. Gerstein HC et al. *NEngl J Med*. 2008;358:2545. Patel A et al. N Engl J Med 2008;358:2560. Duckworth W et al. N Engl J Med 2009;360:129. (erratum: Moritz T. *N Engl J Med* 2009;361:1024)

Effects of Intensive Glycemic Control

	Study	Microva Dise	ascular ease	Macrovascular Disease		Mortality	
	UKPDS		I	\leftrightarrow	₽	$ \Longleftrightarrow $	↓
	DCCT/EDIC	Ļ	₽	\leftrightarrow	Ļ	$ \Longleftrightarrow $	$ \Longleftrightarrow $
A1c in 4M:	ACCORD	(only re	tinopathy)	•	•		D
0.6% in ACCOR	% in ACCORD % in ADVANCE ADVANCE		Ļ	+	•	-	•
	VADT		Ļ	+	•	-	•

UKPDS. *Lancet* 1998; 352:837-853 UKPDS. *N Engl J Med* 2008; 359:1577-1589 DCCT. *N Engl J Med* 1993; 329: 977-986 DCCT/EDIC. *N Engl J Med* 2005;353:2643-2653 ACCORD. *N Engl J Med* 2008; 358(24):2545-59 ADVANCE. *N Engl J Med* 2008; 358 (24): 2560-72 VADT. *N Engl J Med* 2009;360:129-139

Initial Trial Long-term Follow-up

Fighting diabetes is a lot like running a marathon: Legacy effect (metabolic memory) matters!!

DCCT/EDIC

Long-term Follow-up and Legacy Effect

UKPDS

Long-term Follow-up and Legacy Effect

[&]quot;Relative Risk Reduction for Intensive Therapy. UKPDS = United Kingdom Prospective Diabetes Study.

Figure 1: a: DCCT/EDIC Long term follow up and metabolic memory in Type 1 diabetes (T1DM) patients; b: UKPDS long term follow up and legacy effect.

N Engl J Med 329: 977-986. N Engl J Med 353: 2643-2653.

Updated mean A1c and the complications of T2DM (Glucose exposure: metabolic memory !!)

UKPDS: Tight Glycaemic Control Reduces Complications

Epidemiological extrapolation showing benefit of a 1% reduction in mean HbA_{1c}

Association of HbA_{1c} levels with vascular complications and death in patients with type 2 diabetes: evidence of glycaemic thresholds ADVANCE trial

metabolic memory mattered in old DM !!

Table 2 Unadjusted and adjusted hazards of adverse outcomes associated with a 1% higher mean HbA_{1c} level above and below specified knots

Endpoints	HR (95% CI) per 1% higher mean HbA _{1c} level									
	Knots	Overall population				Intensive glucose control	Standard glucose control	<i>p</i> value (intensive		
		Unadjusted	p value	Adjusted ^a	p value	Adjusted ^a	Adjusted ^a	vs standard)		
Macrovascular	Below 7.0	1.07 (0.91, 1.26)	0.4117	1.02 (0.86, 1.21)	0.8310	1.13 (0.89, 1.43)	0.82 (0.65, 1.04)	0.7362		
events	Above 7.0	1.43 (1.35, 1.51)	<0.0001	1.38 (1.30, 1.47)	<0.0001	1.58 (1.43, 1.75)		0.0974		
Microvascular	Below 6.5	1.06 (0.79, 1.42)	0.7012	1.02 (0.76, 1.39)	0.8744	1.06 (0.69, 1.63)	0.82 (0.54, 1.25)	0.9016		
events	Above 6.5	1.58 (1.51, 1.65)	<0.0001	1.40 (1.33, 1.47)	<0.0001	1.72 (1.59, 1.87)		<0.0001		
All-cause	Below 7.0	1.04 (0.88, 1.23)	0.6246	1.01 (0.85, 1.21)	0.9158	1.12 (0.87, 1.44)	0.81 (0.64, 1.04)	0.9008		
death	Above 7.0	1.42 (1.34, 1.51)	<0.0001	1.38 (1.29, 1.48)	<0.0001	1.67 (1.50, 1.86)	1.29 (1.18, 1.41)	0.0080		

mean HbA1c of measurements taken at baseline, 6 months and every 12 months for each individual

控制糖尿病像跑馬拉松:一開始就要好好跑。 跑好! 跑滿!

You definitely need agents more safe and beneficial to control your diabetes.

New era in the treatment of T2DM

"first, do no harm"

"offer a second chance to improve outcome"

Large CV Outcomes Trials in T2D

Am Heart J. 2013;166:217-223.e11; ClinicalTrials.gov. NCT01730534.

Game changer: shows CV safety/benefits in old DM

Savor : 10.3 yrs; Examine: 7.3 yrs; Tecos: 11.6 yrs; EMPA-REG: 50%>10 yrs; LEADER: 13 yrs

Outlines

- New era in the treatment of T2DM
- Diabetic kidney disease(DKD) and CVD
- Intensive Diabetic treatment: focus on both quantity and quality and the efficacy of DPP4i
- Save Kidneys = Save Lives, A nephrologist's perspective
- Pleiotropic effects

High Percentage of Patients Developed Complications when Diabetes is Diagnosed^{BAI05,ALI13}

A high percentage of patients develop micro-vascular complications by the time a diagnosis of type 2 diabetes is made^{BAI05,ALI13}

BAI05. Int J Clin Pract, November 2005, 59, 11, 1309–1316. ALI13. Pak J Med Sci 2013;29(4):899-902.

Improved diabetes care has not yet succeeded in reducing renal complications

MI, myocardial infarction Adapted from Gregg EW *et al.* N Engl J Med 2014;370:1514

Increased Age Is Associated With a Lower eGFR Among Patients With T2DM

Additional observational studies have demonstrated an age-related decline in eGFR in the range of 1.5–5.2 mL/min/1.73 m² in patients with T2DM^{2–4}

Adapted with permission from Premaratne E et al.¹

aNational Kidney Foundation severity scale of renal impairment.

GFR = glomerular filtration rate; T2DM = type 2 diabetes mellitus; eGFR = estimated GFR.

1. Premaratne E et al. Diabetologia. 2005;48:2486–2493. 2. Altemtam N et al. Nephrol Dial Transplant. 2012;27:1847–1854. 3. Ali O et al. BMJ Open. 2013;3:e001855. 4. Rossing K et al. Kidney Int. 2004;66:1596–1605.

Primary Diagnoses for ALL Patients Who Start Dialysis

USRDS 2010 Annual Data Report

Outcomes during 2-year follow-up(risk of death) → CKD+DM is more risky than DM(~2X for Death and 20X ESRD) Kidney International, 2003, S24–S31

Patients with CKD should be considered to be in the **highest** risk category, ie, **a CHD risk equivalent**, for risk factor management.

 KDOQI Clinical Practice Guidelines for Managing Dyslipidemias in Chronic Kidney Disease

發佈了2017血脂肪控制指引,極高風險族群的LDL竟然要降到…

風險	危險因子	LDL	非LDL	Аро В
極高	 (1) LDL<70 mg/dL仍發生進展 性ASCVD,包括UA (2) DM、第3、4期CKD或家族性 高膽固醇+CVD (3) 早發型ASCVD(♂<55歲 ♀<65歲) 	<55	<80	<70
非常高	 (1)確診或最近因ACS、冠狀動 脈、頸動脈、或週邊血管疾病住 院,10年風險>20% (2) <u>DM、第3、4期CKD合併1個</u> 以上危險因子 (3) 家族性高膽固醇 	<70	<100	<80

ASCVD = 粥狀動脈心血管疾病、UA = 不穩定性心絞痛、CKD = 慢性腎臟疾病。

資料來源: https://www.aace.com/files/lipid-guidelines.pdf

Accelerated progression of CVD in CKD

Levey AS, et al. Kidney Int. 2011;80:17-28

Risk Factors for Cardiovascular Disease in Chronic Kidney Disease

Comprehensive Clinical Nephrology

Dyslipidemia in CKD Patients: more atherogenic

Table 1. Effects of renal failure and renal replacement modalities on serum lipids

	LDL-C	sdLDL	TRG	HDL-C	Lp(a)
Predialysis CKD	⇔OR↓	1	1	ţ	†a
Nephrotic syndrome	1	1	↔ OR↑	↓ OR ↔ OR ↑	1
Hemodialysis	↔OR↓	1	1	Ļ	1
Peritoneal dialysis	1	1	1	Ļ	1
Renal transplantation	1	1	1	Ť	↓a

CKD = Chronic kidney disease; LDL-C = low-density lipoprotein-cholesterol; sdLDL = small, dense LDL subfractions; TRG = triglycerides; HDL-C = high-density lipoprotein-cholesterol; Lp(a) = lipoprotein(a).

 \downarrow = Decrease ; \uparrow = increase; \leftrightarrow = no change.

^a Mainly in individuals with high-molecular-weight apolipoprotein(a) phenotypes.

Time profile of disturbances in mineral hormones and bone turnover with progression of chronic kidney disease

Drücke TB. Hyperparathyroidism in Chronic Kidney Disease.

CJASN. 2008;3:1289–95.

Kidney Int 56:1084-1093, 1999

Kidney Int ,2002;61:638–647

骨頭軟趴趴

Outlines

- New era in the treatment of T2DM
- Diabetic kidney disease(DKD) and CVD
- Intensive Diabetic treatment: focus on both quantity and quality and the efficacy of DPP4i
- Save Kidneys = Save Lives, A nephrologist's perspective
- Pleiotropic effects

Intensive Diabetic treatment should focus on both quantity and quality

Quantity

- HbA1c
- FPG
- PPG

Quality

- Hypoglycemia
- Body weight
- Glycemic variability
- CV safety
- Beneficial effects beyond sugar lowering

Traditional antidiabetic agents: unsatisfied effects and unmet needs!!

Diabetes 2009 Apr; 58(4): 773-795. 33

Decreasing HbA1c is associated with increased risks of hypoglycaemia and weight gain

	Major hyp annual	oglycemia rate (%)	Weight ga of follow	ain at end /-up (kg)	
Trial	Intensive	Standard	Intensive	Standard	
ADVANCE	0.6*	0.3*	0.1	-0.8	
ACCORD	3.2	1.0	3.5	0.4	

* Represents 0.7 and 0.4 events per 100 patient years for intensive va standard treatment

↓A1c in 4M:

1.4% in ACCORD

0.6% in ADVANCE

Weight gain and hypoglycaemia

HbA1c=haemoglobin A1c; (Jacob AN, et al. *Diabetes C* Kahn SE, et al. *N Engl J Me* Wright AD, et al. *J Diabetes*

24

Micro-outcomes in the ACCORD More renal injury!

	Glycaemia control			Hazard ratio (95% CI)	p value	NNT	
	Intensive		Standard				
	Events/n	%	Events/n	%			
First composite	443/5107	8.7	444/5108	8.7	1.00 (0.88–1.14)	0.9969	
Second composite	1591/5107	31.2	1659/5108	32.2	-■- 0.96 (0.89–1.02)	0.1948	
Neph-1: incident microalbuminuria	399/3204	12·5	494/3232	15.3	0·79 (0·69-0·90)	0.0005	35
Neph-2: incident macroalbuminuria	138/4334	3.5	199/4361	4.6	0.69 (0.55-0.85)	0.0007	73
Neph-3: ESRD	911/5085	2.1	112/5108	2.2	0.95 (0.73-1.24)	0.7126	
Neph-4: doubling of SCr or >20 U eGFR decrease	2701/5035	<u>53</u> ∙6	2627/5034	52·2	- - 1·07 (1·01-1·13)	0.0160	-69
Neph-5: any of Neph-2, Neph-3, or Neph-4	2788/5107	54.6	2760/5108	54.0	■ 1·05 (0·99–1·10)	0.0928	
Eye-1: photocoagulation or vitrectomy	350/4886	7.2	347/4910	7.1	1.01 (0.87-1.17)	0.9039	
Eye-2: cataract surgery	447/4886	<mark>9</mark> ∙1	495/4910	10.1	0.90 (0.79-1.02)	0.1045	
Eye-3: three-line worsened visual acuity	911/5085	17.9	951/5085	18·7	0.95 (0.87–1.04)	0.3013	
Eye-4: severe loss of vision*	258/4651	5.2	273/4689	5.8	0.95 (0.80-1.13)	0.5656	
Neuro-1: neuropathy (MNSI score >2.0)	1277/2815	45 ∙4	1338/2791	47·9		0.0819	
Neuro-2: loss of vibratory sensation	766/4209	18·2	805/4209	19·1		0.2926	
Neuro-3: loss of ankle jerk	1225/3298	37.1	1270/3265	38.9		0.0997	
Neuro-4: loss of sensation to light touch	424/4577	9.3	481/4564	10.5	0.88 (0.77–1.00)	0.0451	78
				0∙50 Favours intensiv) 0.75 1.00 1.33 ; Favours recontrol standard control		

Lancet 2010; 376: 419-30

Unmet medical need: progressively declining bcell function in type 2 diabetes patients

Glycemic variability and mean A1c = Bad metabolic memory!!

Long-term Glycemic Variability and Risk of Adverse Outcomes: A Systematic Review and Meta-analysis

Diabetes Care 2015;38:2354-2369 | DOI: 10.2337/dc15-1188

RESULTS

Seven studies evaluated HbA_{1c} variability among patients with type 1 diabetes and showed an association of HbA_{1c} variability with renal disease (risk ratio 1.56 [95% CI 1.08–2.25], two studies), cardiovascular events (1.98 [1.39–2.82]), and retinopathy (2.11 [1.54–2.89]). Thirteen studies evaluated HbA_{1c} variability among patients with type 2 diabetes. Higher HbA_{1c} variability was associated with higher risk of renal disease (1.34 [1.15–1.57], two studies), macrovascular events (1.21 [1.06–1.38]), ulceration/gangrene (1.50 [1.06–2.12]), cardiovascular disease (1.27 [1.15–1.40]), and mortality (1.34 [1.18–1.53]). Most studies were retrospective with lack of adjustment for potential confounders, and inconsistency existed in the definition of HbA_{1c} variability.

Short term fluctuations in blood glucose concentrations

Relative risk for death increases with 2-hour blood glucose irrespective of

DECODE Study Group. Lancet 1999;354:617-621

Hypoglycemia and Weight Gain are intertwined

Prandial hyperglycemia (glucose fluctuation)

glucosuria (TGF → afferent a. vasodilation)

Kidney: Intraglomerular pressure

Outlines

- New era in the treatment of T2DM
- Diabetic kidney disease(DKD) and CVD
- Intensive Diabetic treatment: focus on both quantity and quality
- Efficacy of DPP4i
- Pleiotropic effects of DPP4i on renal protection
- Summary

Complementary Effect of Sitagliptin + Metformin on Active GLP-1

*P<.001 vs placebo.

Migoya EM et al. Presented at 2007 ADA Annual Meeting. Abstract # 286-OR.

١

11.

DPP-4-I Alogliptin, Linagliptin, Saxagliptin, Sitagliptin

Medscape

Source: Cardiovasc Diabetol © 2014 BioMed Central, Ltd.

Diabetes. 2008;57(5):1340-1348.

Onglyza + Metformin Initial Combination: Effective HbA1c Reductions Regardless of Baseline Levels

- Proportion of patients achieving therapeutic glycaemic response (HbA1c <7 or ≤6.5%) significantly greater for saxagliptin + metformin combination versus either monotherapy at 24 weeks
- For all treatment groups, greatest HbA1c reductions in patients with highest baseline HbA1c levels

Phase III, 24-week, multicentre, multi-national, randomised, double-blind, active-controlled trial (N=1306) to evaluate the efficacy and safety of saxagliptin plus immediate-release metformin, compared with saxagliptin or metformin monotherapy in treatment-naive adult patients with Type 2 diabetes and high baseline HbA_{1c} (≥ 8 and $\leq 12\%$).¹ Metformin dose was uptitrated from a starting dose of 1000 mg/day to a maximum dose of 2000 mg/day by week 5. Metformin monotherapy HbA_{1c} reduction from baseline in subgroup with HbA_{1c} $\geq 10\%$: -2.7%.

1. Jadzinsky M, et al. Diabetes Obes Metab 2009;11:611–22.

420.907,022_ONG_01/12/2015

2 years

Baseline HbA1c>7% Achieving HbA1c<7% (Observed) at Week 104 without Hypoglycemia and Weight Gain

*Post-hoc analysis; [†]Percentage were calculated as n divided by number of patients with baseline HbA_{1c}≥ 7% included in analysis x 100%; [‡]No weight gain was defined as <2% increase from baseline – weight were last observation carried forward.

Adapted from Göke B, et al. Int J Clin Pract 2013.²

420.907,022_ONG_01/12/2015

Glycaemic instability was defined by: (i) HbA1c increase of $\geq 0.5\%$; (ii) add new anti-DM Rx for ≥ 3 months; or (iii) an increase in dose of oral anti-DM or $\geq 25\%$ increase in insulin dose for ≥ 3 months.

Onglyza may Attenuate the Progression of T2D

Reduce ~30% Glycemic Instability

Treatment*	Patients number	Glycemic instability n (%)	HR (95% CI)	p
Any saxagliptin	8280	4081 (49.3)	0.71 (0.68-0.74)	<0.0001
Placebo	8212	5054 (61.5)		
Saxagliptin only	369	175 (47.4)	0.77 (0.63-0.93)	0.0076
Placebo only	414	237 (57.3)		
Any metformin + saxagliptin	5761	2833 (49.2)	0.68 (0.65-0.72)	< 0.0001
Any metformin + placebo	5654	3540 (62.6)		
Metformin only + saxagliptin	1659	651 (39.2)	0.59 (0.53-0.65)	<0.0001
Metformin only + placebo	1645	935 (56.8)		
Any SU + saxagliptin	3334	1822 (54.7)	0.72 (0.68-0.77)	<0.0001
Any SU + placebo	3263	2176 (66.7)		
Any TZDs + saxagliptin	510	302 (59.2)	0.66 (0.57-0.77)	< 0.0001
Any TZDs + placebo	462	340 (73.6)		
Any insulin + saxagliptin	3423	1734 (50.7)	0.76 (0.72-0.81)	<0.0001
Any insulin + placebo	3363	2028 (60.3)		
Insulin only + saxagliptin	1275	592 (46.4)	0.76 (0.68-0.84)	< 0.0001
Insulin only + placebo	1300	732 (56.3)		

All antidiabetic medications other than saxagliptin are medications at randomization.

CI, confidence interval; HR, hazard ratio; SU, sulphonylurea; TZDs, thiazolidinediones.

*Baseline demographic and biochemical characteristics of the participants treated with saxagliptin and placebo in the different baseline treatment groups were similar (not shown)

Diabetes Obes Metab, 2015. doi: 10.1111/dom.12445

420.907,022_ONG_01/12/2015

Saxagliptir

73.6

Significantly Less Hypoglycemia at 52 Weeks and 104 Weeks

	1-year data ³		2-years	s data²	
	Metformin + saxagliptin 5 mg (n = 428)	Metformin + glipizide 15 mg* (n = 430)	Metformin + saxagliptin 5 mg (n = 428)	Metformin + glipizide 15 mg* (n = 430)	
Percentage of patient with hypoglycaemia	3%†	36%†	3. 5% [‡]	38.4% [‡]	
Number of patients with hypoglycaemia	13	156	15	165	
Total number of hypoglycaemic events	19 750		24	896	
	1.5 events per patient (average)	4.8 events per patient (average)	1.6 events per patient (average)	5.4 events per patient (average)	

*Mean dose received. [†]Difference 33.2%, 95% Cl,38.1, -28.5; p< 0.0001, [†]Difference 34.9%, 95% Cl, -39.8, -30. In those patients who had a hypoglycaemic event.

420.907,022_ONG_01/12/2015

Onglyza can Preserve β-cell Function

HOMA-2b was not available for patients treated with insulin and therefore were excluded.

420.907,022_ONG_01/12/2015

Kombiglyze XR有效降低HbA1c, FPG and PPG

Kombiglyze XR 提供良好血糖調控

 Kombiglyze XR produced significant reductions in average blood glucose concentrations over the 24-hour dosing interval

IR=immediate release, OL=open label Stenlof K et al. Curr Med Res Opon. 2010;26(10):2355-2363

DM + Elderly + CKD = high CVD and mortality

SAVOR, EXAMINE, and TECOS

Baseline Characteristics

	SAVOR ^a n = 16,492	EXAMINE ^b n = 5380	TECOS ^c n = 14,671	
	Saxagliptin vs PBO	Alogliptin vs PBO	Sitagliptin vs PBO	
Mean age, y	65	61	66	
Median duration of T2D, y	10.3	7.3	10.0	

Prevalence of Cardiovascular Disease Is Elevated in the Elderly Population With T2DM¹

Effects of CKD on mortality and cardiovascular disease in the elderly - mean 75yr

Diagnosed myccarda inflanction, ischamic heart disease, peripheral antery disease, or cerebrovascular disease
 T2DM - type 2 diabetes maltus.
 Lolar K et al. *Curr Med Res Opt.* 2016;32:1243-1252.

DPP-4 Inhibitors Have Demonstrated Cardiovascular Safety

a. Green JB, et al. N Engl J Med. 2015;373:232-242; b. White WB, et al. N Engl J Med. 2013;369:1327-1335;
 c. Scirica BM, et al. N Engl J Med. 2013;369:1317-1326.

Effect of Sitagliptin on Kidney Function and Respective CV Outcomes in T2DM in TECOS: Selected CV Outcomes by eGFR at Baseline¹

Adapted with permission from Cornel JH et al.¹

CV = cardiovascular; T2DM = type 2 diabetes mellitus; TECOS = Trial Evaluating Cardiovascular Outcomes With Sitagliptin; eGFR = estimated glomerular filtration rate; MACE = major adverse cardiovascular event; HR = hazard ratio; CI = confidence interval. **1.** Cornel JH et al. *Diabetes Care*. 2016;39:2304–2310.

Safety of Sitagliptin in Elderly Patients With T2DM in TECOS: Primary and Key Secondary Outcomes in the Elderly Cohort by Treatment Group¹

Elderly (≥75 Years) Participants (N=2,004) (ITT Population) Sitagliptin vs Placebo

Outcome	HR (95% CI)	<i>P</i> Value	
4-point MACE	1.10 (0.89, 1.36)	0.40	
3-point MACE	1.01 (0.81, 1.26)	0.94	
Hospitalization for heart failure	0.99 (0.65, 1.49)	0.94	_ _
Hospitalization for heart failure or death	1.00 (0.77, 1.29)	0.99	
All-cause mortality	1.05 (0.83, 1.32)	0.71	→
Acute pancreatitis	2.01 (0.36, 11.04)	0.42	· · · · · · · · · · · · · · · · · · ·
Pancreatic cancer	0.28 (0.03, 2.50)	0.25	• • · · · · · · · · · · · · · · · · · ·
Charter defined malignancy	0.95 (0.67, 1.36)	0.78	_ _
Severe hypoglycemia	1.03 (0.62, 1.71)	0.92	
Bone fracture	1.21 (0.78, 1.85)	0.40	
			0.0 0.5 1.0 1.5 2.0 2.5 3.0 11.0 11.5 Favors Sitagliptin Favors Placebo

Adapted with permission from Bethel MA et al.1

T2DM = type 2 diabetes mellitus; TECOS = Trial Evaluating Cardiovascular Outcomes With Sitagliptin; HR = hazard ratio; CI = confidence interval;

MACE = major adverse cardiovascular events; ITT = Intention-to-treat.

1. Bethel MA et al. Diabetes Care. 2017. doi: 10.2337/dc16-1135.

Sulfonylureas and CV Risk

				SU		Comparator	
Comparators	Trials	P	Ĩ	No. of Events	No. of Patients	No. of Events	No. of Patients
Rosiglitazone	6	.140		209	3490	251	3714
Placebo/No Therapy	2	.190		279	1306	225	969
Metformin	2	.930		78	1589	85	1610
Insulin	2	.830		278	1252	209	929
GLP-1 RA	2	.920		8	380	9	515
Pioglitazone	8	.740		86	3173	80	3195
DPP-4-1	5	.005		61	3701	32	3704
AGI	2	.230		4	_ 140	2	228
	0.	1	1 Favors SU Favors com	10 parator		100	

Overall MACE (29 trials) was equivalent for SU vs comparators: MH-OR 1.10 (95% CI: 0.95, 1.28; P = .18) CV mortality (37 trials) was higher for SU vs comparators: MH-OR 1.22 (95% CI: 1.10, 1.49; P = .047)

scape

Monami M, et al. Diabetes Obes Metab. 2013;15:938-953.

Islet dysfunction, including hyperglucagonemia and postprandial hyperglycemia, may play a more significant role in elderly with T2D

elderly () and the young ()

Diabetes 2003 Jul; 52(7): 1738-1748. Am J Physiol 284:E7–E12, 2003

≥50% of elderly patients achieving a target HbA1c A1C ≤7% in monotherapy

Age ≥75 years

Age <75 years

T2DM in older individuals is known to be associated with relative hyperglucagonaemia and elevated postprandial glucose. Vildagliptin treatment appears to address both these defects

Schweizer A et al Diabetes Obes Metab. 2011; 13: 55-64.

Efficacy and Safety of Saxagliptin in <u>Older Participants</u> in the SAVOR-TIMI 53 Trial

Diabetes Care 2015;38:1145-1153 | DOI: 10.2337/dc14-2868

Saxa improves reaching A1C goal

64

Long-term treatment with saxagliptin in pts with T2DM and renal impairment: a randomised controlled 52-week efficacy and safety study.

Int J Clin Pract. 2011 Dec;65(12):1230-9

SUMMARY

Objective: Therapeutic options are limited for diabetes patients with renal disease. This report presents 52-week results from a study assessing the dipeptidyl peptidase-4 inhibitor saxagliptin in patients with type 2 diabetes mellitus (T2DM) and renal impairment. **Design:** Double-blind study in patients stratified by baseline renal impairment (moderate, severe or end-stage renal disease [ESRD] on haemodialysis) randomised to saxagliptin 2.5 mg once daily or placebo added to other antidiabetic drugs in use at baseline, including insulin. Patients: A total of 170 adults with glycated haemoglobin (HbA_{1c}) 7–11% and creatinine clearance < 50 ml/min or ESRD were randomised and treated. Measurements: Absolute changes in HbA_{1c} and fasting plasma glucose (FPG) from baseline to week 52 were evaluated using analysis of covariance (ANCOVA) with last observation carried forward. Repeated-measures analyses were also performed. Results: Adjusted mean decrease in HbA_{1c} was greater with saxagliptin than placebo (difference, -0.73%, p < 0.001 [ANCOVA]). Reductions in adjusted mean HbA_{1c} were numerically greater with saxagliptin than placebo in patients with renal impairment rated as moderate (-0.94% vs. 0.19% respectively) or severe (-0.81% vs. -0.49%), but similar to placebo for those with ESRD (-1.13% vs. -0.99%). Reductions in adjusted mean FPG were numerically greater with saxagliptin in patients with moderate or severe renal impairment. Saxagliptin was generally well tolerated; similar proportions of patients in the saxagliptin and placebo groups reported hypoglycaemic events (28% and 29% respectively). Conclusions: Saxagliptin 2.5 mg once daily offers sustained efficacy and good tolerability for patients with T2DM and renal impairment.

Vildagliptin provided reduction in HbA1c in T2DM patients with moderate or severe RI (52 wks)

Severe RI

Moderate RI

Kohny W, Shao O, Groog PH, Lukashevich V.Diabena: Obes Nextb. 2012 Jun 12

TABLE 96-2 Glucose and insulin metabolism in patients with chronic kidney disease

Usually normal fasting blood glucose, but tendency to spontaneous hypoglycemia Fasting hyperinsulinemia with prolonged insulin half-life and elevated blood levels of proinsulin and C peptide

- Decreased requirement for insulin by diabetic patients
- Usually decreased early, but exaggerated late-insulin reponse to hyperglycemia induced
- by oral or intravenous glucose administration
- Elevated plasma immunoreactive glucagon concentration

Impaired glucose tolerance (decreased peripheral sensitivity to insulin action, but normal suppression of hepatic glucose production by insulin)

61

Treatment with DPP4i has all of these beneficial effects!!

Quantity

- HbA1c
- FPG
- PPG

Quality

- Hypoglycemia
- Body weight
- Glycemic variability
- Safety profile(CV and adverse effects) in all patient populations(CKD and/or elderly, etc.)

Outlines

- New era in the treatment of T2DM
- Diabetic kidney disease(DKD) and CVD
- Intensive Diabetic treatment: focus on both quantity and quality and the efficacy of DPP4i
- Save Kidneys = Save Lives, A nephrologist's perspective
- Pleiotropic effects

Nature Reviews Nephrology 10, 88–103 (2014) / doi:10.1038/nrneph.2013.272

Blood pressure in glomerulus is important for renal protection!!

Lessons from ARB/ACEi and SGLT2i

ARBs decrease renal complications in T2DM

	T2DM (N)	Treatment	Primary outcome
IRMA-2	Microalbuminuria (590)	lrbesartan 150/300 mg vs placebo	Time to nephropathy: ↓39% (150 mg, P = 0.08) ↓70% (300 mg, P < 0.001)
IDNT	Nephropathy (1715)	Irbesartan/ amlodipine/ placebo	ESRD/ [↑] Cr 2×/mortality: ↓20% vs placebo (P = 0.02) ↓23% vs amlodipine (P = 0.006)
MARVAL	Microalbuminuria (332)	Valsartan/ amlodipine	∆ UAER at 24 weeks: ↓44% valsartan vs ↓8% amlodipine (P < 0.001)
RENAAL	Nephropathy (1513)	Losartan/ placebo	ESRD/Cr 2× /all deaths: 16% vs placebo (P = 0.02)
ROADMAP I	normoalbuminuric	40 mg omesartan	出現微量白蛋白尿的危險性減少23%

Cr = creatinine UAER = urinary albumin excretion rate

Adapted from Sharma AM. Hypertension. 2004;44:12-19.

Follow-up (years)

Cardiology. 2013;126(3):175-86.

80% pts with ACEI/ARB

eGFR (CKD-EPI formula) over 192 weeks

Mixed model repeated measures analysis in all patients treated with ≥1 dose of study drug(OC-AD). eGFR, estimated glomerular filtration rate; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration.

Attenuation of glomerular hypertension protects kidneys!!

All patients had type 2 diabetes and eGFR ≥30 ml/min/1.73 kg² Assessment of renal outcomes was a prespecified component of the secondary microvascular outcome in EMPA-REG OUTCOME

Wanner C, et al; for the EMPA-REG OUTCOME Investigators. N Engl J Med. 2016. DOI:10.1056NEJMoa1515920.

Save kidneys=Save lives!!

Outlines

- New era in the treatment of T2DM
- Diabetic kidney disease(DKD) and CVD
- Intensive Diabetic treatment: focus on both quantity and quality and the efficacy of DPP4i
- Save Kidneys = Save Lives, A nephrologist's perspective
- Pleiotropic effects of DPP4i

Table 2 <mark>Glucose-independent effects of incretin-based therapies on renal risk factors in type 2 diaber</mark>						
Renal risk factor	GLP-1RA	DPP-4 inhibitor	Putative GLP-1-mediated mechanisms			
Inflammation and fibrosis Me	Decrease etabolic	Decrease	 ↓ Renal ROS production (cAMP and PKA)^{102,179} ↓ AGE-RAGE-mediated renal ROS production (cAMP)^{181,265,266} ↓ Angiotensin II-induced renal ROS production (PKC)^{182,183} ↑ Adiponectin (reduces podocyte inflammation; PKA in adipocytes)²⁶⁷ 			
Glomerular hyperfiltration Hem	Decrease or neutral effect odynar	Neutral effect nic	↑ Tubuloglomerular feedback (by ↓ NHE3 activity) ↓ Postprandial glucagon (particularly short-acting GLP-1RA) ^{70,71,90} ? ↓ Body weight ⁹⁰ ? ↓ GEE* (postprandial hyperfiltration) ⁹⁰ ? ↓ RAAS activity ^{87,127} ?			

Nature Reviews | Nephrology

Nature Reviews Nephrology (2017) doi:10.1038/nrneph.2017.123

80

Saxa effect on renal outcome

Diabetes Care 2016 Oct; dc160621

There were no meaningful differences in any of the prespecified renal safety outcomes between saxagliptin and placebo treatment arms: doubling of serum cre-NS rred in 183 (2.02%) versus atinine 166 (1.82%) subjects (hazard ratio [HR] 1.1 [95% CI 0.89–1.36]) and initiation of chronic dialysis, renal transplant, or serum creatinine >6.0 mg/dL o NS red in 51 (0.61%) versus 55 (0.67%) subjects (HR 0.90 [0.61–1.32]), respectively. The composite end point of death and any of the above occurred in 577 (6.58%) versus 528 (5.86%) subjects (HR 1.08 [0.96-1.22]). The overall change in eGFR during follow-up was similar in the saxagliptin and placebo arms, as well as in the different ACR and eGFR categories (at the EOT, the mean change from baseline was -2.49 vs. -2.37 mL/min in the saxagliptin and placebo groups, respectively; *P* = 0.5794). NS

Onglyza Changes in Microalbuminuria & UACR by Category

*Treatment difference in the number and proportion of patients with albumin/creatinine ratios that worsened, did not change, or improved is defined as a shift from baseline category (<3.4, ≥3.4 to ≤33.9, or >33.9 mg/mmol).

 $^{+}P<0.001$ vs placebo; $^{+}P = 0.0058$ vs placebo.

Scirica BM, et al. N Engl J Med. 2013.10.1056/NEJMoa1307684.

Onglyza is not approved for the treatment of albuminuria

Onglyza Improved Albuminuria Irrespective of Renal Function

Worsening* microalbuminuria

Frequency of Progressive Microalbuminuria by Completion of Follow-up According to Renal Function

*The risk of progressive microalbuminuria was defined as a treatment difference in the number and proportion of patients with worsening, no change, or improvement in urinary albumin-to-creatinine ratio (ACR), defined as a shift from baseline category (<3.4, ≥3.4 to <33.9, or >33.9 mg/mmol) over the duration of follow-up among patients with complete data. †*P*<0.0001 vs placebo; ‡P=0.041 vs placebo. P-values based on chi-square or Fisher's exact test.

Onglyza is not approved for the treatment of albuminuria

Improved* microalbuminuria

Onglyza Improvement and Worsening in ACR Category at 2 years in Patients with and without Improvement in HbA1c

Diabetes Care 2017;40:69-76 | DOI: 10.2337/dc16-0621

Renal outcome from TECOS

Table 3—Estimated mean 4-year eGFR and UACR between-treatment group differences (sitagliptin minus placebo), overall and by baseline eGFR stages

	Mean between-group treatment			
	Baseline value	difference (95% CI)†	P value†	
eGFR (N = 13,604), mL/min/1.73 m ²				
Overall	75.1 ± 21.0	-1.34 (-1.76 to -0.91)	< 0.0001	
Stage 1 (eGFR \geq 90 mL/min/1.73 m ²)	104 ± 14	-0.22 (-1.19 to 0.75)		
Stage 2 (eGFR 60–89 mL/min/1.73 m ²)	73 ± 9	-1.42 (-2.05 to -0.79)	Interaction $P = 0.14$	
Stage 3a (eGFR 45–59 mL/min/1.73 m ²)	53 ± 4	-1.33 (-2.45 to -0.21)		
Stage 3b (eGFR 30–44 mL/min/1.73 m ²)	39 ± 4	-2.25 (-4.27 to -0.23)		
UACR (N = 3,832), mg/g				
Overall	11.1 (3.9, 35.0)	-0.18 (-0.35 to -0.02)	0.031	
Stage 1 (eGFR \geq 90 mL/min/1.73 m ²)	11.0 (4.7, 30.2)	-0.18 (-0.53 to 0.16)		
Stage 2 (eGFR 60–89 mL/min/1.73 m ²)	9.7 (3.5, 29.2)	-0.20 (-0.42 to 0.02)		
Stage 3a (eGFR 45–59 mL/min/1.73 m ²)	14.3 (4.1, 55.4)	-0.30 (-0.70 to 0.09)	Interaction $P = 0.68$	
Stage 3b (eGFR 30-44 mL/min/1.73 m ²)	27.7 (9.7, 126.6)	0.23 (-0.54 to 1.00)		

Diabetes Care. 2016;39:2304–2310

ORIGINAL ARTICLE

Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized MARLINA-T2D trial Diabetes Obes Metab. 2017;1–10.

eGFR (CKD-EPI, cystatin C) at week 24 between the linagliptin and placebo groups was -2.63 mL/min (P = .3306).

Follow-up (years)

Cardiology. 2013;126(3):175-86.

Saxagliptin Provide Potential Renoprotective Effect

- 1. Saxagliptin inhibited the development of renal injury independent of its glucoselowering effect
- 2. The renoprotective effect of saxagliptin is attributable to antiinflammatory and antifibrotic action through the strong suppression of renal DPP-4 activity

*Data abstracted from Dahl-S rats Onglyza is not approved for the treatment of albuminuria

Eur J Pharmacol. 2016 Apr 7. pii: S0014-2999(16)30209-6. doi: 10.1016/j.ejphar.2016.04.005. [Epub ahead of print]

GLP-1 has protective effects on kidney

- Hyperglycaemia causes endothelial dysfunction through several pathways, including reduction of GLP-1R signaling and enhanced angiotensin II signaling
- GLP-1 has protective effects on glomerular endothelial cells through inhibition of angiotensin II signaling and inhibition of pro-inflammatory action
- GLP-1 partly mediates its protective action via the GLP-1 receptor
 - Expressed in the renal endothelium

GLP1-R agonist: effects on the kidney

b Mesangial expansion scores 1.5 1.0 Mesangial 0.5 Expansion 150 Fibronectin staining intensity (% vehicle) 100 Fibronectin 100 Podocyte number (/glomerulus) 80 60 Number of 40 20 podocytes е 500 400 GBM (nm) 300 **GBM** width 200 100 0 SQ22536 H-89

Liraglutid reduces renal damage in diabetic mice

SQ: Inhibitor of cAMP H-89: Inhibitor of proteinkinase Fujita et al., Kidney Int 2014;85:579

Placebo

Liraglutid

Fibrogenesis & Tissue Repair (2016) 9:1

cation-independent mannose 6-phosphate receptor (CIM6PR) is central to the activation process of TGF- β 1 in human kidney proximal tubular cells exposed to high glucose

Diabetes 2014 Jun; 63(6): 1829-1830

European Journal of Pharmacology 761 (2015) 109-115

Contents lists available at ScienceDirect

European Journal of Pharmacology

journal homepage: www.elsevier.com/locate/ejphar

Pulmonary, gastrointestinal and urogenital pharmacology

Critical role of renal dipeptidyl peptidase-4 in ameliorating kidney injury induced by saxagliptin in Dahl salt-sensitive hypertensive rats

Mariko Sakai^a, Masako Uchii^a, Kensuke Myojo^b, Tetsuya Kitayama^a, Shunji Kunori^{a,*}

^a Nephrology Research Laboratories, Nephrology R&D unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan

^b Translational Research Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan

European Journal of Pharmacology 761 (2015) 109–115

Sakai, M., Uchii, M., Myojo, K., Kitayama, T. & Kunori, S. Critical role of renal dipeptidyl peptidase-4 in ameliorating kidney injury induced by saxagliptin in Dahl saltsensitive hypertensive rats. *Eur J Pharmacol* **761**, 109–115 (2015). 420.907,022_ONG_01/12/2015

Onglyza is not approved for the treatment of albuminuria

Renal DPP4 Inhibition by Saxagliptin is more potent than Sitagliptin*

Both saxagliptin and sitagliptin significantly inhibited the plasma DPP-4 activity by 95% or more in the Dahl-S rats; the inhibitory effects on the plasma DPP-4 activity were comparable between saxagliptin and sitaliptin (25+/-5 and 32+/-6 pmol, respectively). In the renal tissues, saxagliptin and sitagliptin also inhibited the increase in the DPP-4 activity, although the inhibitory effect of saxagliptin on DPP-4 was more potent than that of sitagliptin (507+/- 165 and 1971+/-223 pmol /mg protein, respectively; P<0.01)

Sakai, M., Uchii, M., Myojo, K., Kitayama, T. & Kunori, S. Critical role of renal dipeptidyl peptidase-4 in ameliorating kidney injury induced by saxagliptin in Dahl saltsensitive hypertensive rats. *Eur J Pharmacol* **761**, 109–115 (2015). 420.907,022_ONG_01/12/2015

*Data abstracted from Dahl-S rats Onglyza is not approved for the treatment of albuminuria

Onglyza was Associated with Albuminuria Decrease but not Sitagliptin after 2 Weeks and 4 Weeks*

Sakai, M., Uchii, M., Myojo, K., Kitayama, T. & Kunori, S. Critical role of renal dipeptidyl peptidase-4 in ameliorating kidney injury induced by saxagliptin in Dahl saltsensitive hypertensive rats. *Eur J Pharmacol* **761**, 109–115 (2015). 420.907,022_ONG_01/12/2015 *Data abstracted from Dahl-S rats Onglyza is not approved for the treatment of albuminuria

Take home messages

水管千瘡百孔,一邊把水壓 關小一邊來做修補,會得到 比較好的效果。

Summary

- Chronic kidney disease is a recognized comorbidity among patients with T2DM
- The presence of renal insufficiency and/or old age is an important consideration for choice of antihyperglycemic therapy
- DPP4is may be an appropriate choice for T2D pts with renal impairment and/or old age in many aspects: glucose fluctuation, hypoglycemia and weight gain
- DPP4i has clinical evidence supporting use: reduce albuminuria and safe CV and renal effects in pts with high CV risk

Thanks!!