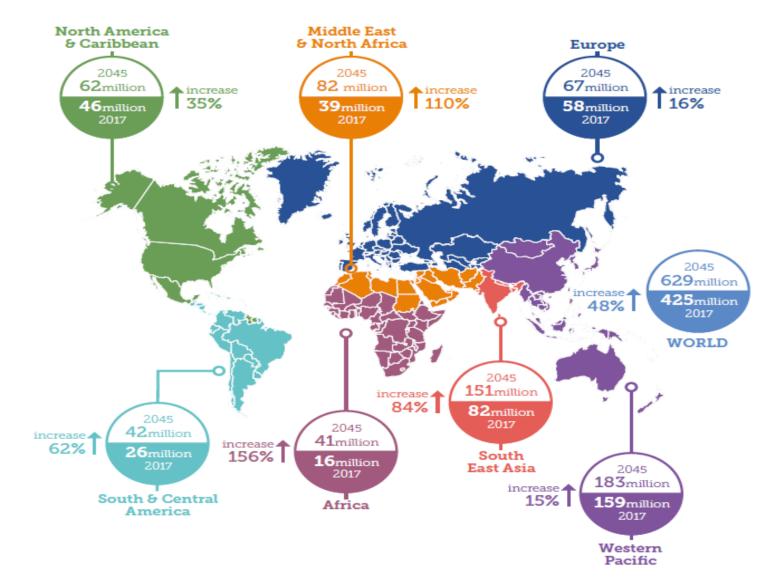
Holistic Care for the Patients with Cardiovascular Diseases


Adapt 2018 Diabetes Guidelines Into Clinical Practice

台大醫院內科部

Diabetes: A global emergency

Number of people with diabetes worldwide and per region in 2017 and 2045 (20-79 years)

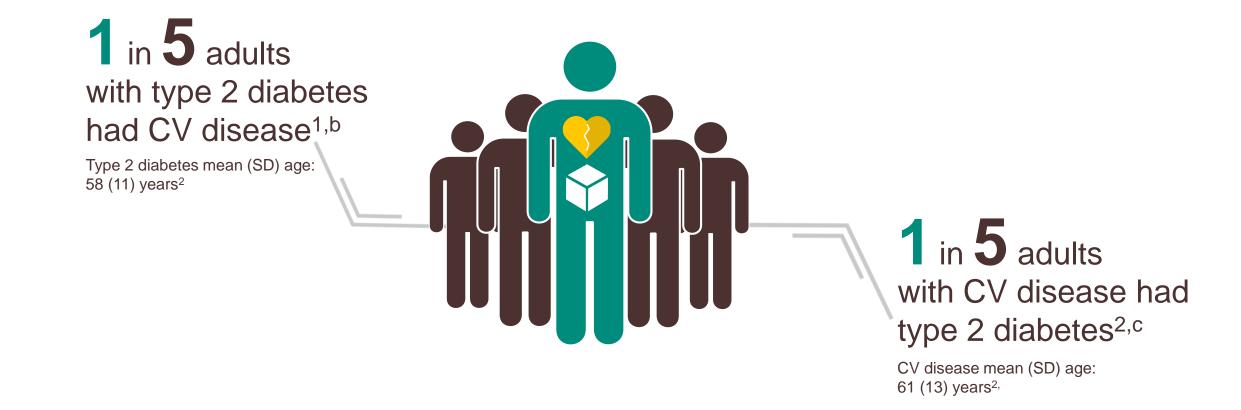
Diabetes Complications

People with diabetes are at **higher risk** of developing periodontal disease

Pregnant woman with diabetes or at high risk for GDM should manage their glycaemia throughout their pregnancy to avoid lond-term consequences for themselves and their children, and **trasgenerational effects** (higher risk of obesity, diabetes, hypertension and kidney disease in the offspring) Diabetic retinopathy affects over **one-third** of all people with diabetes and is the leading cause of vision loss in working-age adults

Ó

3E


People with diabetes are 2 to 3 times more likely to have cardiovascular disease (CVD)

The prevalence of end-stage renal disease (ESRD) is up to **10 times higher** in people with diabetes

Every **30 seconds** a lower limb or part of a lower limb is lost to amputation somewhere in the world as a consequence of diabetes

1 in 5 Adults With Type 2 Diabetes or CV Disease had both conditions ^a

^aCV disease includes myocardial infarct, angina, heart failure, stroke, other ischemic disease, arrhythmias, cardiac arrest, atherosclerosis, peripheral vascular disease, arterial thrombosis and embolism, cardiomyopathy, endocarditis, pericarditis, myocarditis, rheumatic heart disease and fever, conduction disorders, other unspecified CV disease conditions.

^bRetrospective database analysis of 778,344 patients with type 2 diabetes; 17.8% had comorbid CV disease.

^cRetrospective database analysis of 691,934 patients with CV disease; 20% had comorbid type 2 diabetes.

1. Sander S, et al. Poster presented at: 2016 American Academy of Managed Care Nexus; October 3-6, 2016; National Harbor, MD.

2. Data on File. Boehringer Ingelheim Pharmaceuticals, Inc.

Taiwan: More than 33% T2D patients have CVD¹

In Taiwan

type 2 diabetes had CV disease¹.

2672002020	Available online at www.sciencedirect.com	Statistics.
2-22	SciVerse ScienceDirect	bernefici b. Terdenie Reduct Association
<u>e.M.</u>	iournal homepage: www.ifma-online.com	

ORIGINAL ARTICLE

Prevalence of hypertension and dyslipidemia and their associations with micro- and macrovascular diseases in patients with diabetes in Taiwan: An analysis of nationwide data for 2000–2009

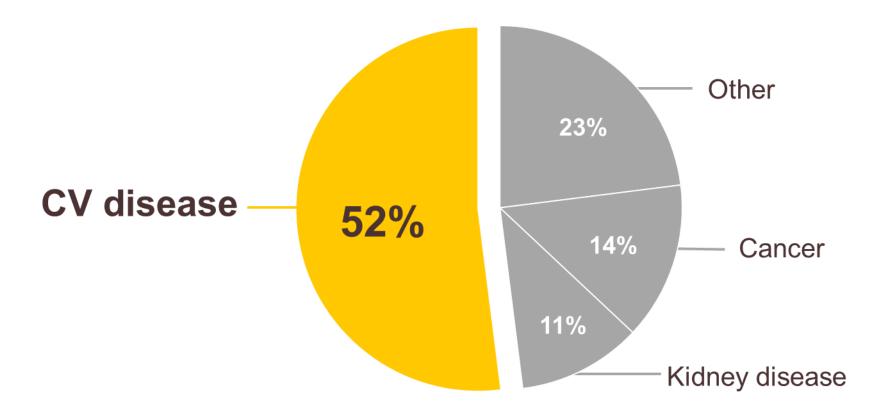
```
Li-Nien Tseng <sup>a,b,i</sup>, Yao-Hsien Tseng <sup>a,i</sup>, Yi-Der Jiang <sup>c</sup>,
Chia-Hsuin Chang <sup>c,d</sup>, Ching-Hu Chung <sup>e</sup>, Boniface J. Lin <sup>f</sup>,
Lee-Ming Chuang <sup>c,d</sup>, Tong-Yuan Tai <sup>g,**</sup>, Wayne H.-H. Sheu <sup>a,b,h,*</sup>
```

1. L.-N. Tseng et al. Journal of the Formosan Medical Association (2012) 111, 625e636

					Year							P for tren		
				2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	_
F	Age group	<40	Number	1,680	1,515	1,521	1,467	1,506	1,509	1,422	1,644	1,539	1,536	
			Prevalence	8.87%	9.91%	9.00%	8.60%	8.15%	8.11%	7.34%	8.01%	7.25%	7.51%	0.001
		40-65	Number	58,212	58,668	60,549	62,709	66,525	67,416	68,535	71,700	73,536	71,922	
			Prevalence	32.51%	31.36%	30.33%	29.80%	29.44%	28.64%	27.87%	27.55%	26.77%	26.27%	< 0.001
		>65	Number	85,482	90,249	96,987	101,721	110,274	117,081	121,656	127,974	134,256	135,327	
			Prevalence	51.67%	50.55%	49.76%	48.64%	48.43%	47.90%	46.80%	45.86%	44.86%	44.00%	< 0.001
	Total		Number	145,374	150,432	159,057	165,897	178,305	186,006	191,613	201,318	209,331	208,785	
			Prevalence	40.00%	39.49%	38.66%	38.00%	37.77%	37.32%	36.48%	35.96%	35.17%	34.70%	<0.001
Μ	Age group	<40	Number	2,292	2,262	2,508	2,571	2,853	3,024	3,087	3,243	3,435	3,441	
			Prevalence	10.38%	10.60%	10.76%	10.47%	10.64%	10.83%	10.58%	10.63%	10.69%	11.12%	0.045
		40-65	Number	50,016	52,644	56,826	60,519	68,148	72,132	76,425	81,486	86,724	89,142	
			Prevalence	27.97%	27.21%	26.56%	26.10%	26.56%	26.42%	26.41%	26.14%	25.79%	25.99%	0.003
		>65	Number	71,694	74,187	79,023	82,440	88,251	93,597	96,765	101,985	106,767	107,397	
			Prevalence	50.60%	49.17%	48.33%	47.44%	46.93%	46.76%	45.80%	45.13%	44.25%	43.47%	<0.001
	Total		Number	124,002	129,093	138,357	145,530	159,252	168,753	176,277	186,714	196,926	199,980	
			Prevalence	36.20%	35.30%	34.53%	33.83%	33.78%	33.67%	33.27%	32.86%	32.30%	32.20%	< 0.001
All	CVD in DM			269,613	279,798	297,750	311,805	337,926	354,765	367,890	388,032	406,257	408,765	
% C	VD in DM			38.14%	37.42%	36.60%	35.90%	35.76%	35.49%	34.87%	34.40%	33.72%	33.43%	<0.001

The Heart of Diabetes

"CV disease is the No.1 cause of death worldwide in patients with T2D"

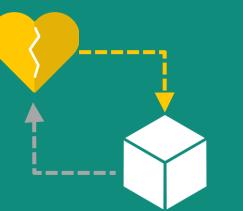

 Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes¹

1. Morrish NJ et al. Diabetologia 2001;44 Suppl 2:S14

CV disease is the No.1 cause of death worldwide in patients with T2D¹

Cause of death in patients with T2D²

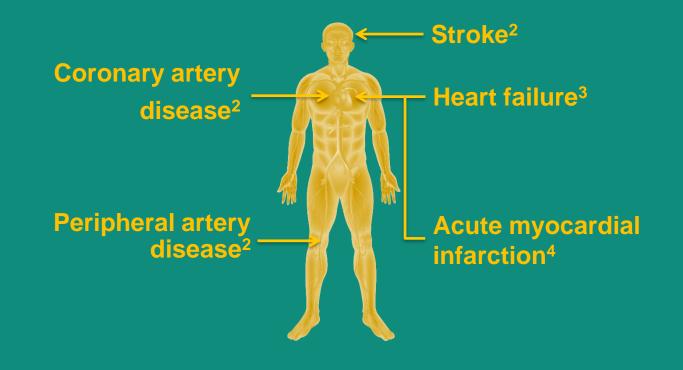
Mean follow-up was 9.4 years for men and 9.8 years for women; N=709



CV, cardiovascular; T2D, type 2 diabetes

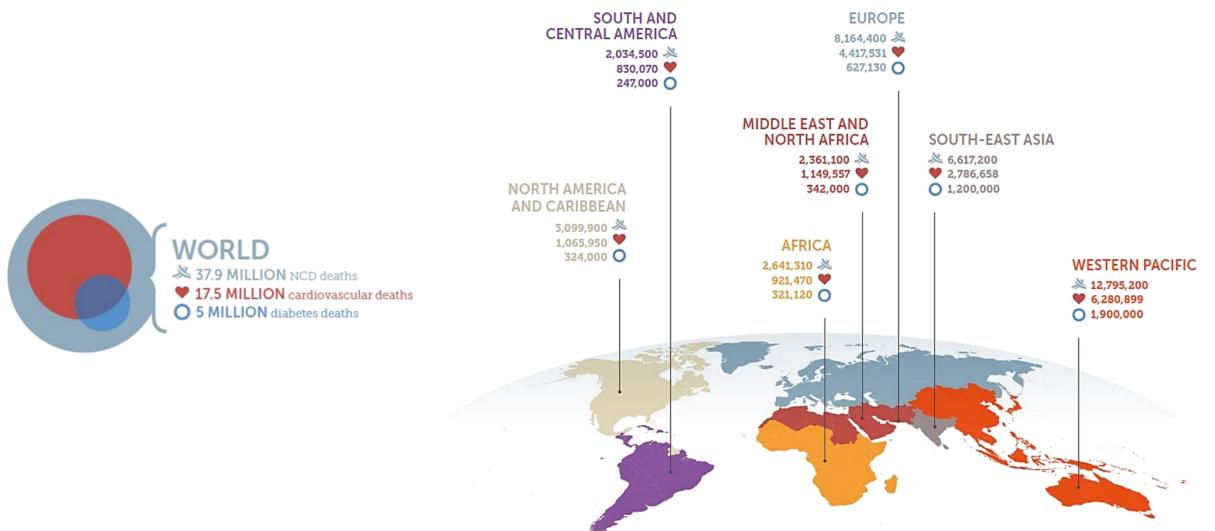
1. International Diabetes Federation. IDF Diabetes Atlas. 7th edn. 2015. www.idf.org/diabetesatlas (accessed June 2017);

2. Morrish NJ et al. Diabetologia 2001;44 Suppl 2:S14


CV disease is an inevitable complication and No.1 cause of death in T2D

CV, cardiovascular; T2D, type 2 diabetes
1. Dokken BB. *Diabetes Spectrum* 2008;21:160;
2. World Health Organization. Types of cardiovascular disease. 2015. Available at:

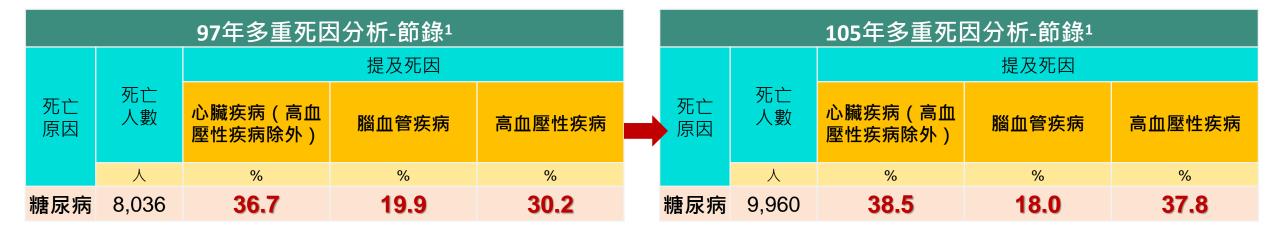
American Heart Association. What is cardiovascular disease? 2014. Available at:
 Thygesen K et al. Eur Heart J 2012;33:2551 (all websites accessed March 2017)


Complex and multifactorial pathophysiological pathways in T2D are responsible for CV disease¹

rdiovascular_diseases/en/cvd_atlas_01_types.pdf2ua=_; HEARTORG/Categiver/Resources/WhatisCardiovascularDisease/What-is-Cardiovascular-Disease_UCM_301852_Article.jsp_;

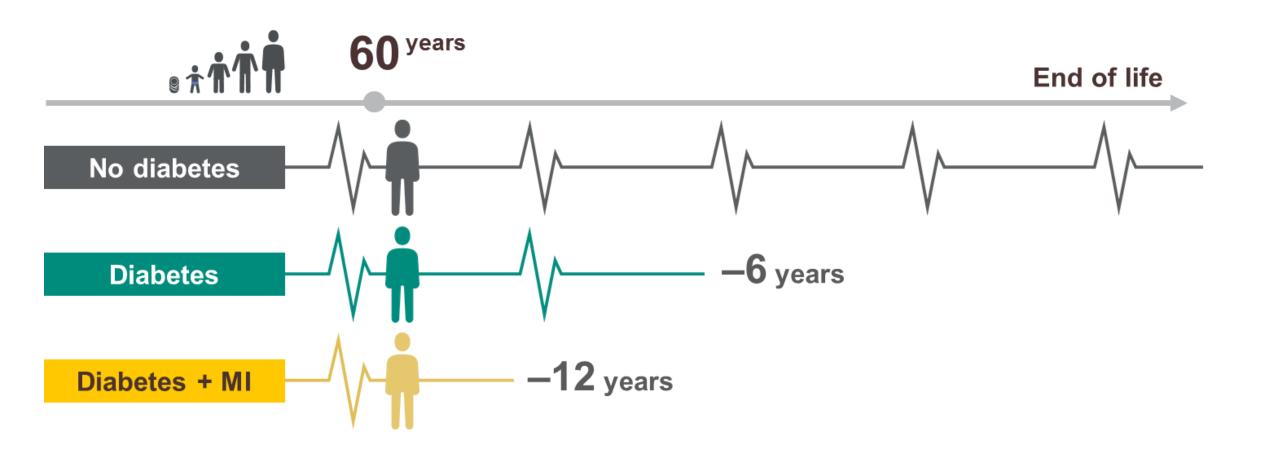
The Heart of Diabetes

Western Pacific countries have the highest mortality rates due to diabetes and CV disease in the world


CV, cardiovascular; NCD, non-communicable disease

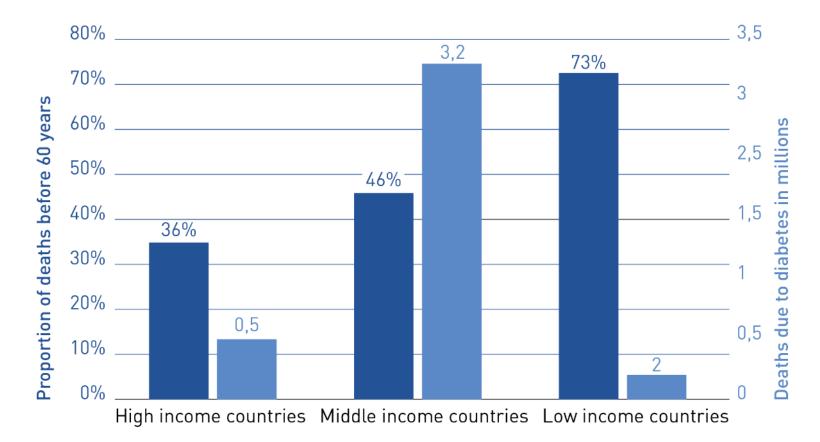
Diabetes and Cardiovascular Disease. International Disease Federation 2016. Available at: http://www.idf.org/sites/default/files/CVD_in_diabetes_report.pdf (accessed April 2017)

Diabetic correlated CV Death in Taiwan, 2008 - 2016


In Taiwan

The number of patients with T2D dying from CV disease is still increasing as the main causes in past 10 years¹.

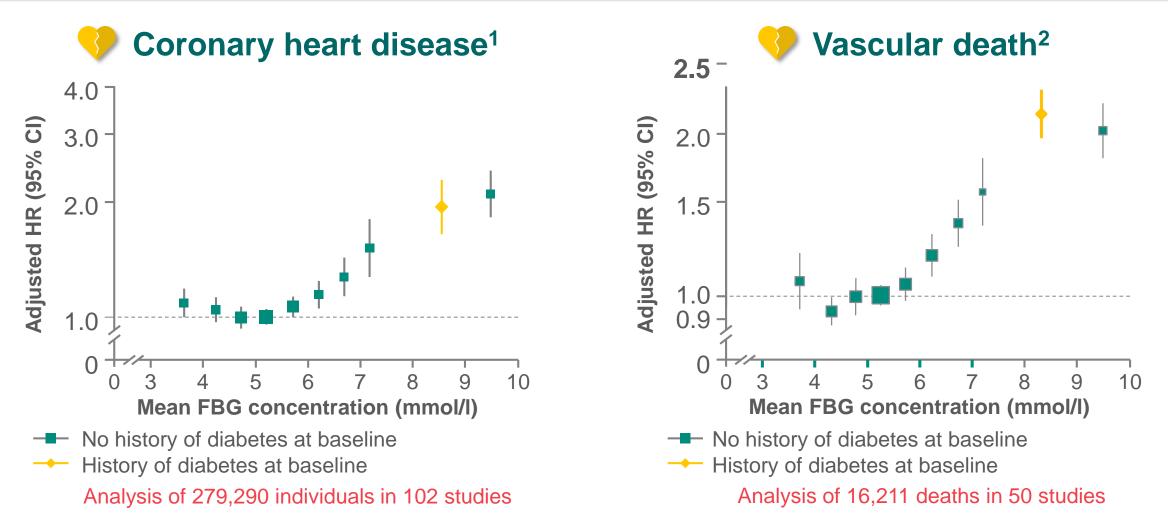
1. 國民健康署多重死因分析 97~105


Life expectancy is significantly decreased in patients with T2D and established CV disease*

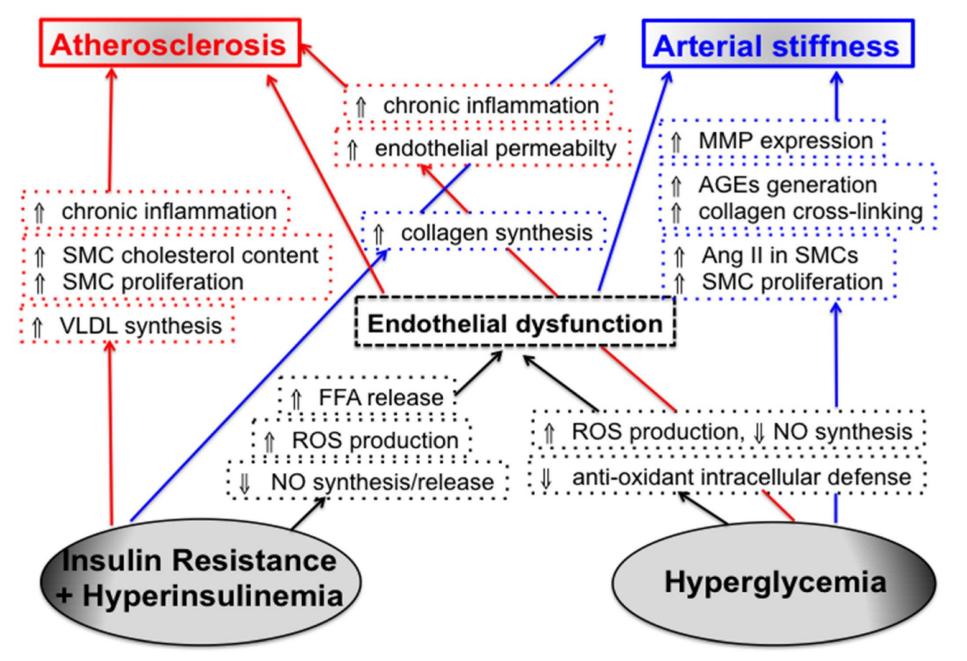
In this case, CV disease is represented by MI or stroke. *Male, 60 years of age with history of MI or stroke CV, cardiovascular; MI, myocardial infarction; T2D, type 2 diabetes The Emerging Risk Factors Collaboration. *JAMA* 2015;314:52

Deaths attributable to diabetes by age (20-79 years)

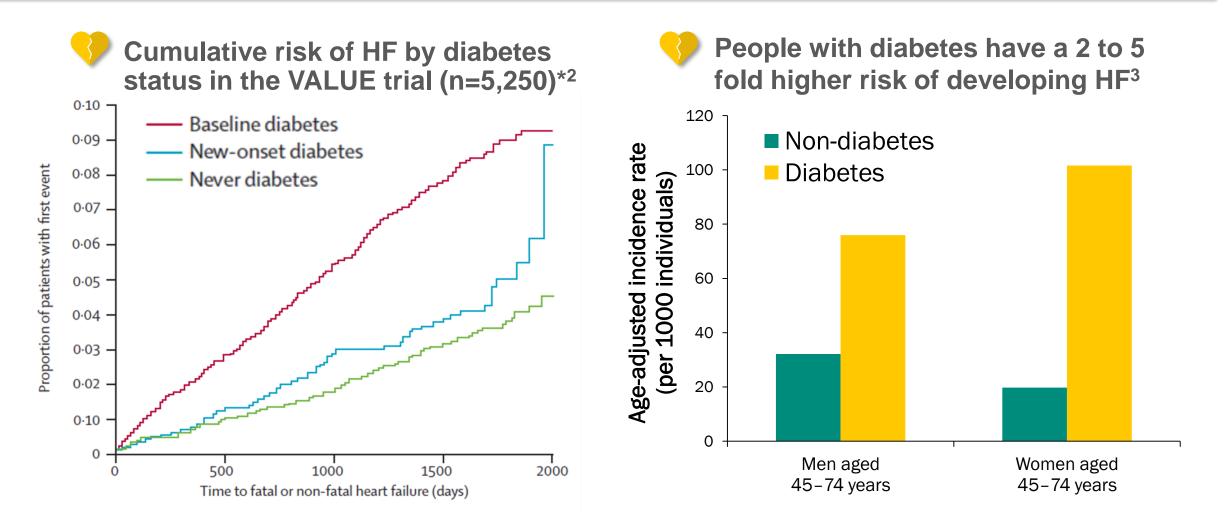
"Half of the 4 million people who die from diabetes are under the age of 60"


T2D is a significant risk factor for CV disease

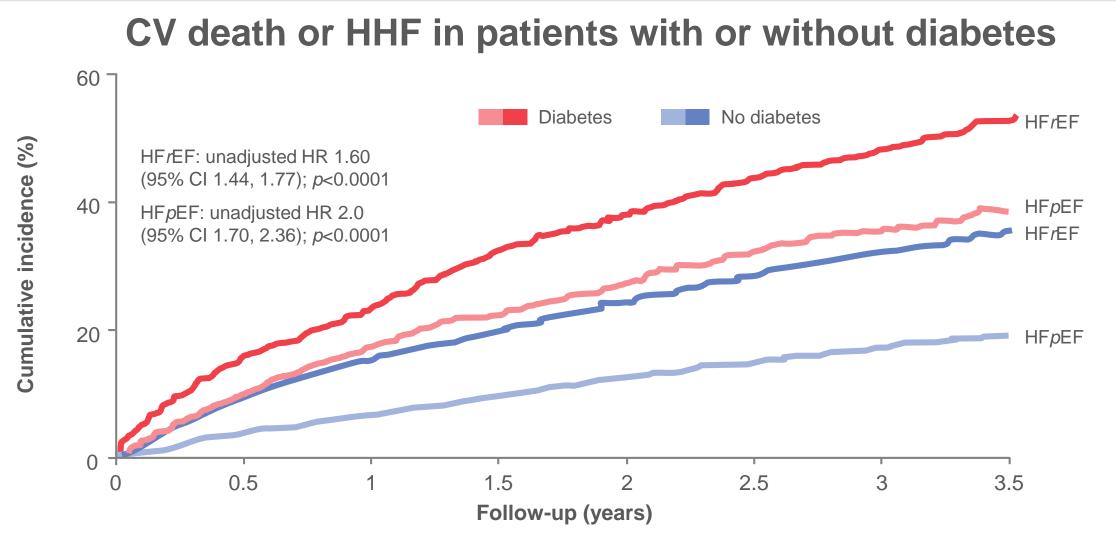
- World Heart Federation. Diabetes¹


1. World Heart Federation. Diabetes. 2016. Available at: www.world-heart-federation.org/cardiovascular-health/cardiovascular-disease-risk-factors/diabetes (accessed March 2017)

The Heart of Diabetes


Risk of adverse CV outcomes increases with rising blood glucose levels

CHD, coronary heart disease; CI, confidence interval; CV, cardiovascular; FBG, fasting blood glucose; HbA1c, glycosylated haemoglobin; HR, hazard ratio 1. Sarwar N *et al. Lancet* 2010;375:2215; 2. Seshasai SRK *et al. N Engl J Med* 2011;364:829



Diabetes accelerates the onset and increases the risk of HF

* Sample consisted of individuals with hypertension and CV disease or with high CV disease risk; amlodipine and valsartan combined; HF, heart failure 1. Hess K, et al. Eur Heart J Suppl. 2012;14(Suppl B):B4-B13; 2. McMurray JJV et al. Lancet Diabetes Endocrinol 2014;2:843; 3, Kannel WB et al. Am J Cardiol 1974;34:29

Patients with diabetes and HF have a worse prognosis than patients with HF alone

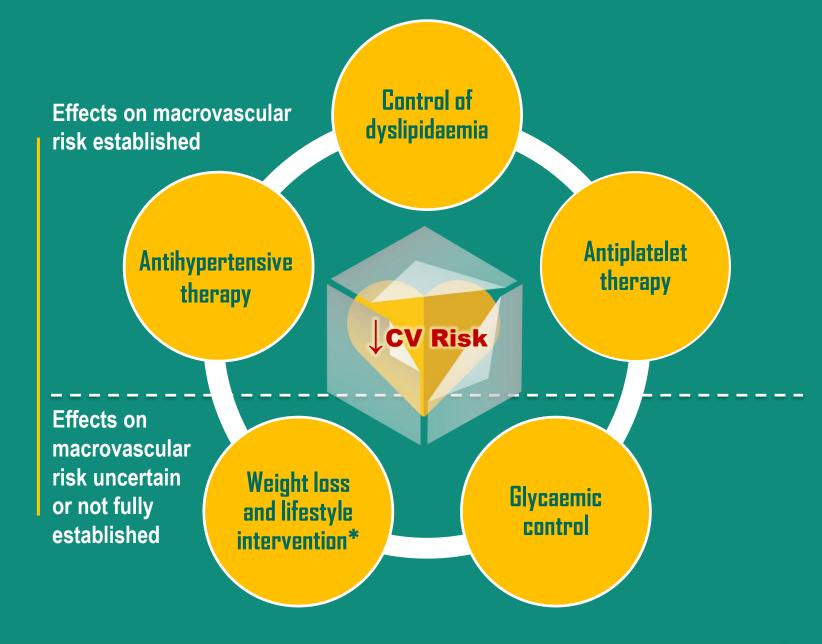
*HRs refer to the risk of CV death or HHF in patients with diabetes versus non-diabetes MacDonald MR *et al. Eur Heart J* 2008;29:1377

T2D established with CVD should be faced

European Society of Cardiology¹

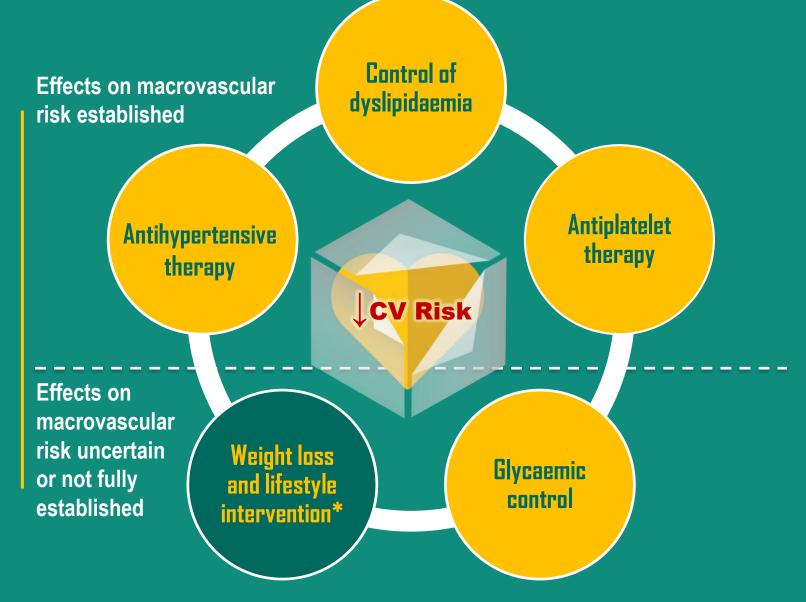
Patients with 'diabetes, and at least one other CV risk factor or target organ damage, should be considered to be at very high risk...

....Most other people with diabetes [...] are categorised as high risk...

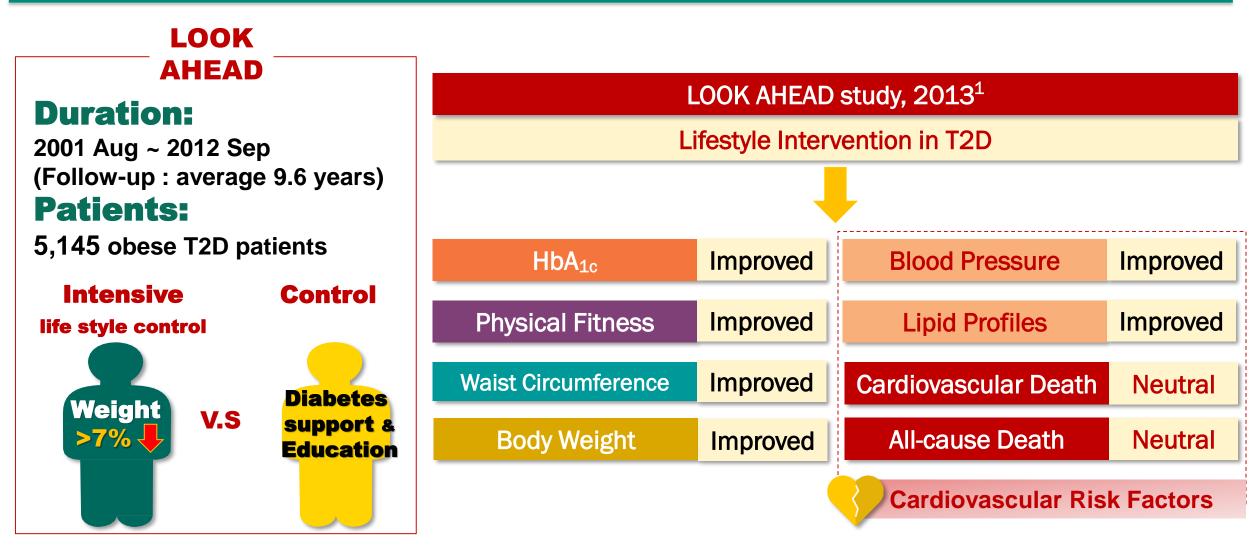

...High risk persons [...] may be candidates for **drug treatment**.'

Canadian Diabetes Association²

'Diabetes promotes both the development and adverse impact of CV disease risk factors...

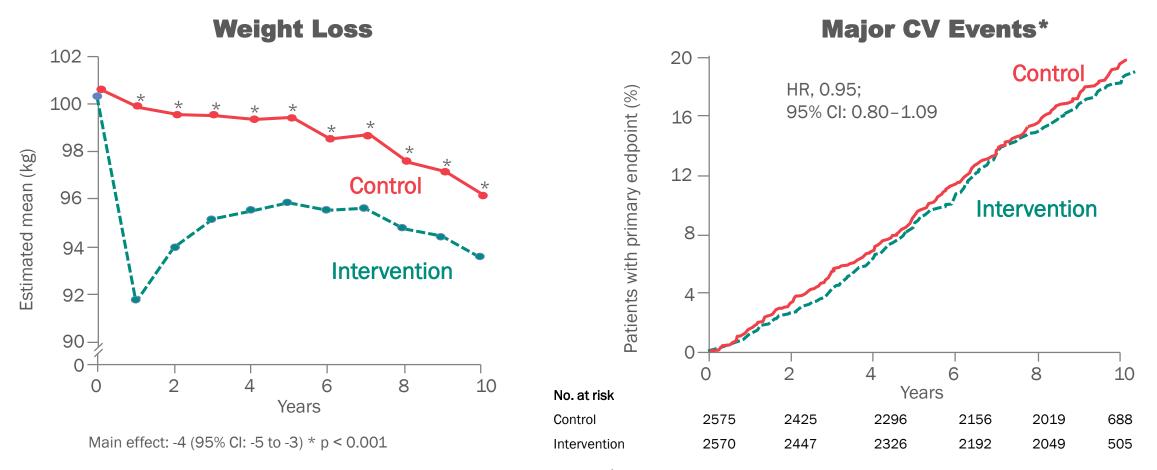

...All adults with diabetes require chronic disease care strategies that include [...] for many individuals, pharmacological vascular protection...'

Management of CV risk factors in T2D



Management of CV risk factors in T2D

Weight loss and lifestyle intervention


Life style Interventions and their impacts on CV risk¹

1. Look AHEAD Research Group. *N Engl J Med* 2013;369:145–54.

The Heart of Diabetes

Intensive lifestyle intervention, focused on weight loss, did not improve CV risk in T2D in the long term

*Endpoint: Composite of CV death, non-fatal MI, non-fatal stroke and hospitalisation for angina.

Look AHEAD Research Group. N Engl J Med 2013;369:145-54.

Management of CV risk factors in T2D

Glycaemic Control

*Includes smoking cessation. Anonymous. Eur Heart J 2013;34:3035–87.

The Heart of Diabetes

Does Intensive glycaemic control help : Learning from UKPDS

FPG

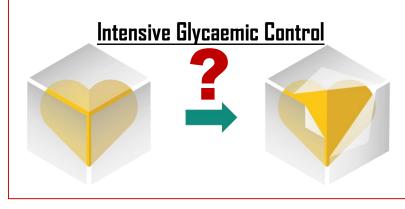
270

FPG

<108

Randomization

UKPDS


United Kingdom Prospective Diabetes Study

Duration:

1977-1997 (The pre-statin era)

Patients:

5,012 New diagnosis T2D

*Median follow-up, 10 years; †assessed as surrogate endpoints; follow-up, 12 years. UKPDS 33. Lancet 1998;352:837–53.

Conventional glycemic control

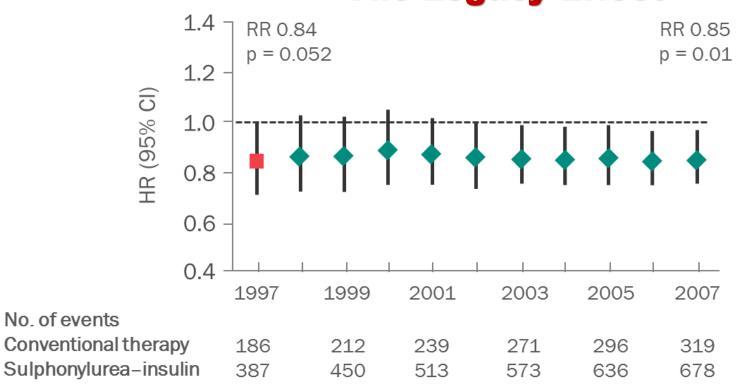
The target fasting glucose was less than 270 mg/dl.
With the intention of keeping asymptomatic.

Intensive glycemic control

- The target fasting glucose was 108 mg/dl.
- When diet failed to achieve these targets, patients were randomized to SUs, insulin or metformin (in obese patients only).

•When single treatments failed, combinations were used.

UKPDS: Intensive glycaemic control reduced microvascular but not macrovascular outcomes


The Heart of Diabetes

UKPDS: Long-term follow-up revealed significant reduction in MI associated with previous intensive glycaemic control

UKPDS

10 years follow up **Duration:** 1997 - 2007**Patients:** 3,277 attended annual UKPDS Intensive Conventional glycemic control glycemic control FPG **FPG** V.S 108270

10 years follow-up of Fatal or non-fatal MI with Intensive treatment: The Legacy Effect

Overall values at the end of the study in 1997

Annual values during the 10-year post-trial monitoring period

Holman et al. N Engl J Med 2008;359:1577-89.

Glucose-lowering studies confirmed benefit on microvascular complications but mixed results on macrovascular outcomes

Study ¹	Baseline HbA _{1c} Control vs intensive	Mean duration of diabetes at baseline (years)	Microvascular		CVD		Mortality	
UKPDS	9%→ 7.9% vs 7%	Newly diagnosed	\downarrow	\downarrow	\leftrightarrow	↓ MI only	\leftrightarrow	\downarrow
ACCORD ^{1–3}	8.3%→ 7.5% vs 6.4%	10.0 ↓*		*	\leftrightarrow		1	
ADVANCE	7.5 %→ 7.3% vs 6.5%	8.0	\downarrow	↔**	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
VADT	9.4 %→ 8.4% vs 6.9%	11.5	\downarrow	?	\leftrightarrow	\downarrow	\leftrightarrow	\leftrightarrow

Long-term follow-up^{1,4,5}

 \downarrow = decreased

 \leftrightarrow = neutral

 \uparrow = increased

*No change in primary microvascular composite but significant decreases in micro/macroalbuminuria2,3

**No change in major clinical microvascular events but significant reduction in ESRD (p = 0.007)5

1. Table adapted from Bergenstal et al. Am J Med 2010;123:374.e9-e18. 2. Genuth et al. Clin Endocrinol Metab 2012;97:41-8.

3. Ismail-Beigi et al. Lancet 2010;376:419–30. 4. Hayward et al. N Engl J Med 2015;372:2197-206 (VADT). 5. Zoungas et al. N Engl J Med 2014;371:1392-406.

Number of events (annual event rate, %) Favours less **Favours more** Hazard ratio ΔHbA_{1c} (%) Trials More intensive intensive Less intensive intensive (95% CI) All-cause mortality ACCORD 257 (1.41) 203 (1.14) -1.01 1.22(1.01 - 1.46)ADVANCE -0.72 0.93 (0.83 - 1.06) 498 (1.86) 533 (1.99) UKPDS 123 (0.13) 53 (0.25) -0.66 0.96 (0.70 - 1.33)VADT 102 (2.22) 95 (2.06) -1.16 1.07(0.81 - 1.42)Overall 980 884 -0.88 1.04(0.90 - 1.20)0=5.71, p=0.13, l²=47.5%) Cardiovascular death 1.35(1.04 - 1.76)ACCORD 137 (0.79) 94 (0.56) -1.01 0.88(0.74 - 1.04)ADVANCE -0.72 253 (0.95) 289 (1.08) 1.02 (0.66 - 1.57)UKPDS 71 (0.53) 29 (0.52) -0.66 1.32(0.81 - 2.14)VADT -1.16 38 (0.83) 29 (0.63) 1.10(0.84 - 1.42)Overall -0.88 497 441 $0=8.61, p=0.04, l^2=65,1\%$ 0.5 1.0 2.0 Hazard ratio (95% CI)

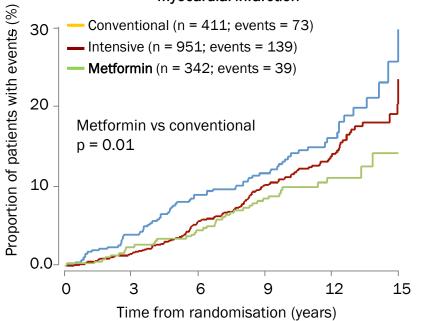
Meta-analysis including 27,049 participants and 2370 major vascular events

Turnbull et al. Diabetologia 2009;52:2288-98.

Meta-analysis shows modest benefit of intensive glycaemic control on macrovascular risk

	(annual eve	of events ent rate, %)	<	Favours less	Hazard ratio	
Trials	More intensive	Less intensive	ΔHbA _{1c} (%)	Favours more intensive	intensive	(95% CI)
Major cardiovas	cular events*			1		
ACCORD	352 (2.11)	371 (2.29)	-1.01			0.90 (0.78 - 1.04)
ADVANCE	557 (2.15)	590 (2.28)	-0.72			0.94 (0.84 - 1.06)
UKPDS	169 (1.30)	87 (1.60)	-0.66			0.80 (0.62 - 1.04)
VADT	116 (2.68)	128 (2.98)	-1.16	 _		0.90 (0.70 - 1.16)
Overall	1194	1176	-0.88			0.91 (0.84 - 0.99)
Stroke	1104	1110	0.00	T	(Q=1.32, <i>p</i> =0.72, <i>l</i> ² =0.00
Dverall	378	370	-0.88			0.96 (0.83 - 1.10)
Myocardial infa	rction				(Q=0.40, p=0.94, l ² =0.00
Overall	730	745	-0.88	+		0.85 (0.76 - 0.94)
Hospitalised/fa	tal heart failure				(Q=2.25, p=0.52, l ² =0.00
Overall	459	446	-0.88			1.00 (0.86 - 1.16)
				-		Q=3.59, p=0.31, l ² =16.4
Diamonds incorpora	CV death or non-fatal stroke or ate point estimate (vertical das		ss 95% CI of	0.5 1.0)	2.0
verall effect for eacl	h outcome.			Hazard ratio	(95% CI)	

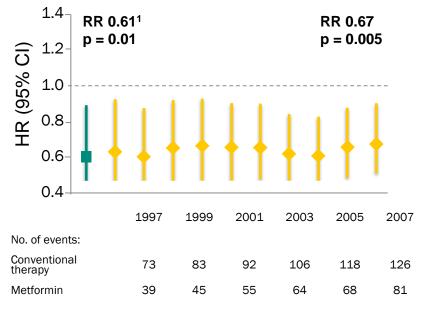
Moto analysis including 27 040 participants and 2270 major vaccular events


Turnbull et al. Diabetologia 2009;52:2288-98.

Hazard ratio (95% CI)

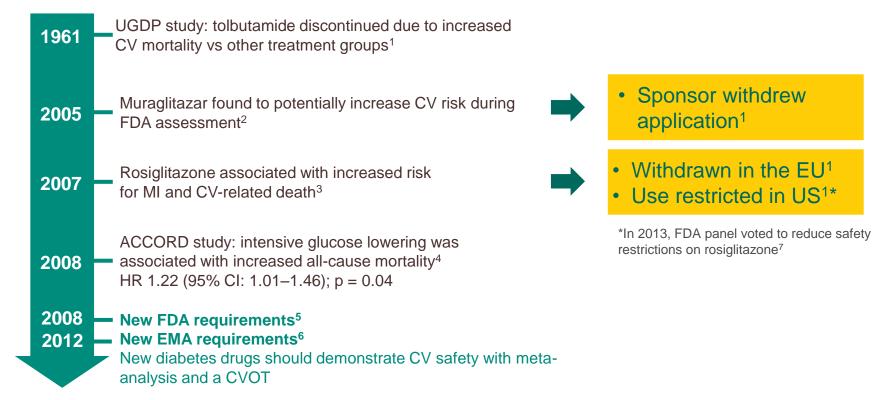
Starts from Metformin...

UKPDS 34 provides some evidence for beneficial CV effects of metformin in overweight patients


Risk of MI is 39% lower with metformin vs conventional therapy in obese patients^{1,2}

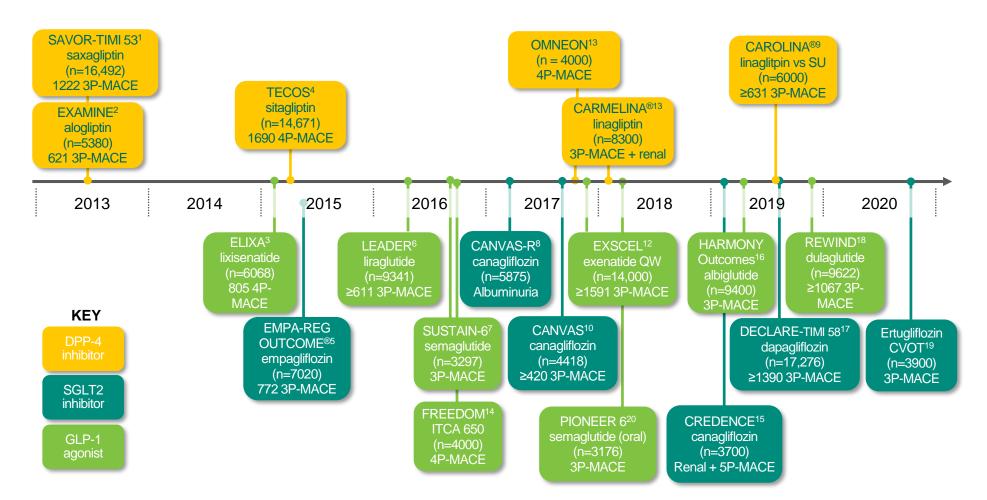
Myocardial infarction

Significant reduction in MI maintained over 10 years' follow-up³


- Overall values at study end in 1997
- Annual values during 10-year post-trial monitoring period

1. UKPDS 34. Lancet 1998;352:854–65. 2. http://www.medicines.org.uk/emc/medicine/23244/SPC. 3. Holman et al. N Engl J Med 2008;359:1577–89.

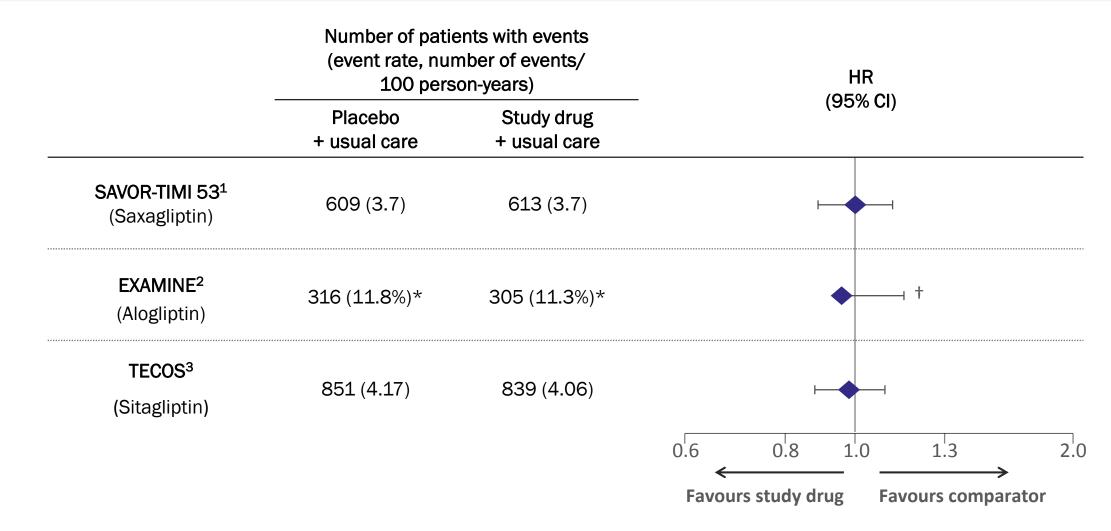
Then inspired from CV safety issues


Adverse CV events led the FDA to require demonstration of CV safety for new glucose-lowering drugs

1. Nissen. Ann Intern Med 2012;157:671–2. 2. Nissen et al. JAMA 2005;294:2581–6. 3. Nissen et al. N Engl J Med 2007;356:2457–71. 4. ACCORD Study Group. N Engl J Med 2008;358:2545–59.

- 5. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/%20guidances/ucm071627.pdf
- 6. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/06/WC500129256.pdf
- 7. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm376683.htm?source=govdelivery&utm_medium=email&utm_source=govdelivery

CV safety trials are being conducted for each compound within the newer classes



Trial disclosure dates for non-published trials from clinicaltrials.gov

3P-MACE, 3-point major adverse cardiovascular events; 4P-MACE, 4-point major adverse cardiovascular events; 5P-MACE, 5-point major adverse cardiovascular events; CV, cardiovascular; CVOT, cardiovascular outcomes trial; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; SGLT2, sodium-glucose co-transporter-2

Adapted from Johansen OE. World J Diabetes 2015;6:1092 (references 1-19 expanded in slide notes)

No DPP4 inhibitor has been shown to reduce major adverse CV events in T2D patients¹⁻³

*Total event rate, %; †Upper boundary of 1-sided repeated CI

1. Scirica BM et al. N Engl J Med 2013;369:1317; 2. White WB et al. N Engl J Med 2013;369:1327; 3. Green JB et al. N Engl J Med 2015;373;232

Direct comparison of trials is not valid due to differences in study design, populations and methodology

CVOTs have revealed different CV effects of GLP-1 RA

Primary outcome IP-MACE CV death HHF	Placebo + usual care 399/3034 (13.2) 158/3034 (5.2) 127/3034 (4.2)	Study drug + usual care 406/3034 (13.4) 156/3034 (5.1)	HR (95% Cl) 1.02 (0.89, 1.17) 0.98 (0.78, 1.22)		<i>p</i> -value 0.81
CV death	158/3034 (5.2)	, , ,	, , , , , , , , , , , , , , , , , , ,		
	, , ,	156/3034 (5.1)	0.98 (0.78, 1.22)	⊢ <u>↓</u>	
HHF	127/3034(4.2)		. ,		0.85
	121/3034 (4.2)	122/3034 (4.0)	0.96 (0.75, 1.23)	⊢	0.75
3P-MACE	694/4672 (14.9)	608/4668 (13.0)	0.87 (0.78, 0.97)	⊢⊕ 1	0.01*
CV death	278/4672 (6.0)	219/4668 (4.7)	0.78 (0.66, 0.93)	⊢-●1	0.007
HHF	248/4672 (5.3)	218/4668 (4.7)	0.87 (0.73, 1.05)	⊢ ●-+	0.11
3P-MACE	146/1649 (8.9)	108/1648 (6.6)	0.74 (0.58, 0.95)	⊢_ I	0.02*
CV death	46/1649 (2.8)	44/1648 (2.7)	0.98 (0.65, 1.48)	⊢	0.92
HHF	54/1648 (3.3)	59/1648 (3.6)	1.11 (0.77, 1.61)	⊢	0.12
3	V death HHF P-MACE V death	V death 278/4672 (6.0) HHF 248/4672 (5.3) P-MACE 146/1649 (8.9) V death 46/1649 (2.8)	V death 278/4672 (6.0) 219/4668 (4.7) HHF 248/4672 (5.3) 218/4668 (4.7) P-MACE 146/1649 (8.9) 108/1648 (6.6) V death 46/1649 (2.8) 44/1648 (2.7)	V death $278/4672 (6.0)$ $219/4668 (4.7)$ $0.78 (0.66, 0.93)$ HHF $248/4672 (5.3)$ $218/4668 (4.7)$ $0.87 (0.73, 1.05)$ P-MACE $146/1649 (8.9)$ $108/1648 (6.6)$ $0.74 (0.58, 0.95)$ V death $46/1649 (2.8)$ $44/1648 (2.7)$ $0.98 (0.65, 1.48)$ HHF $54/1648 (3.3)$ $59/1648 (3.6)$ $1.11 (0.77, 1.61)$	V death 278/4672 (6.0) 219/4668 (4.7) 0.78 (0.66, 0.93) HHF 248/4672 (5.3) 218/4668 (4.7) 0.87 (0.73, 1.05) P-MACE 146/1649 (8.9) 108/1648 (6.6) 0.74 (0.58, 0.95) V death 46/1649 (2.8) 44/1648 (2.7) 0.98 (0.65, 1.48)

**p*-value for superiority.

3P-MACE, 3-point major adverse cardiovascular events; 4P-MACE, 3-point major adverse cardiovascular events; CV, cardiovascular; GLP-1, glucagon-like peptide – 1;HHF, hospitalisation for heart failure 1. Pfeffer MA *et al.* N Engl J Med 2015;373:2247; 2. Marso SP *et al.* N Eng J Med 2016;375:311; 3. Marso SP *et al.* N Eng J Med 2016;375:1834

Direct comparison of trials is not valid due to differences in study design, populations and methodology

Both SGLT2 inhibitor CVOTs have reported CV benefits, however, in different extend of clinical endpoints.

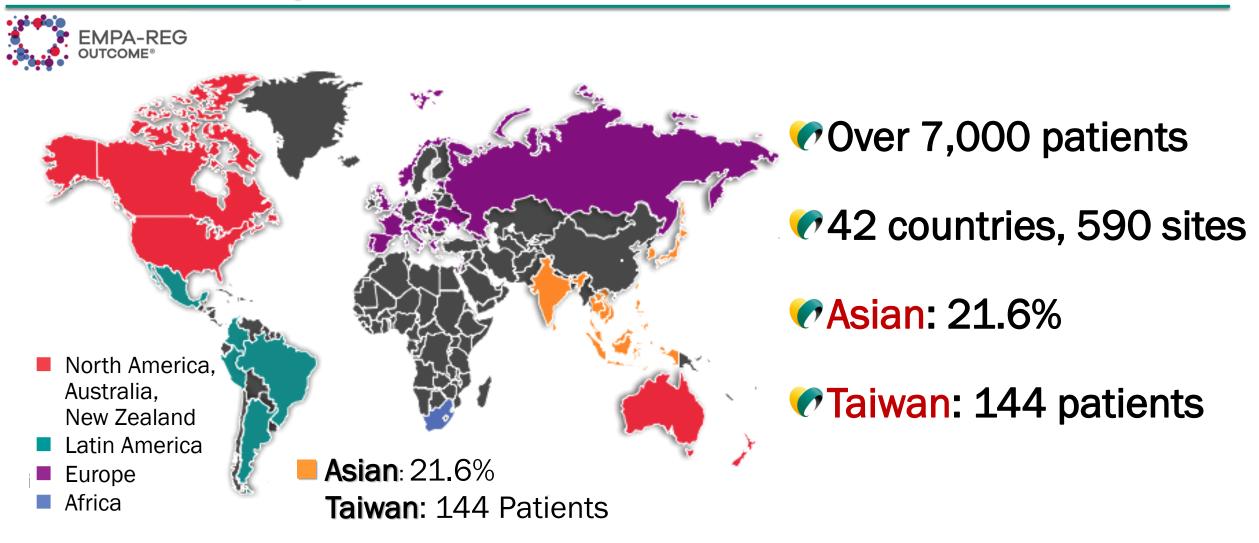
			event/n treated I (%)	_		
Trial	Primary outcome	Placebo + usual care	Study drug + usual care	HR (95% CI)		<i>p</i> -value
EMPA-REG	3P-MACE	282/2333 (12.1)	490/4687 (10.5)	0.86 (0.74, 0.99)	⊢● -	0.04*
OUTCOME®1	CV death	137/2333 (5.9)	172/4687 (3.7)	0.62 (0.49, 0.77)	⊢ ●1	<0.001 [†]
(Empagliflozin)	HHF	95/2333 (4.1)	126/4687 (2.7)	0.65 (0.50, 0.85)	⊢	0.002†
	3P-MACE	426/4347 (9.8)	585/5795 (10.1)	0.86 (0.75, 0.97)	⊢⊕ ⊣	0.02*
CANVAS® 2 (Canagliflozin)	CV death	185/4347 (4.3)	268/5795 (4.6)	0.87 (0.72, 1.06)	⊢ ●- •	-
	HHF	120/4347 (2.8)	123/5795 (2.1)	0.67 (0.52, 0.87)	⊢ ●1	-
					0.25 0.50 1.00 2.00	4.00
				Favo	ours study drug Favours	s placebo

*p-value for superiority. †nominal p-value

3P-MACE, 3-point major adverse cardiovascular events; CV, cardiovascular; HHF, hospitalisation for heart failure; SGLT2, sodium-glucose transporter 2

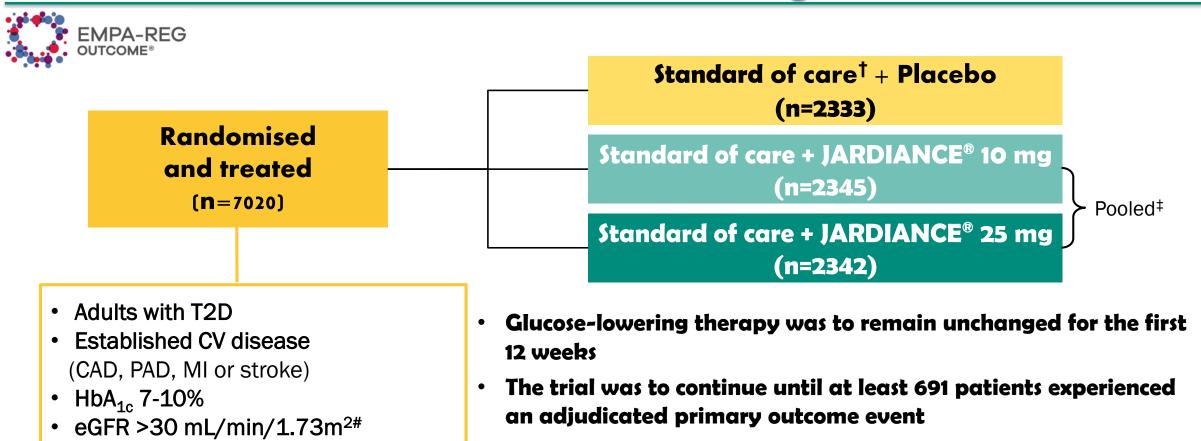
1. Zinman B et al. N Engl J Med 2015:373:2117; 2. Neal B et al. N Engl J Med 2017; doi:10.1056/NEJMoa1611925

Direct comparison of trials is not valid due to differences in study design, populations and methodology


Jardiance[®] and EMPA-REG OUTCOME[®], was the first to provide insight into CV benefits of a glucose-lowering agent

Jardiance & EMPA-REG OUTCOME® revealed

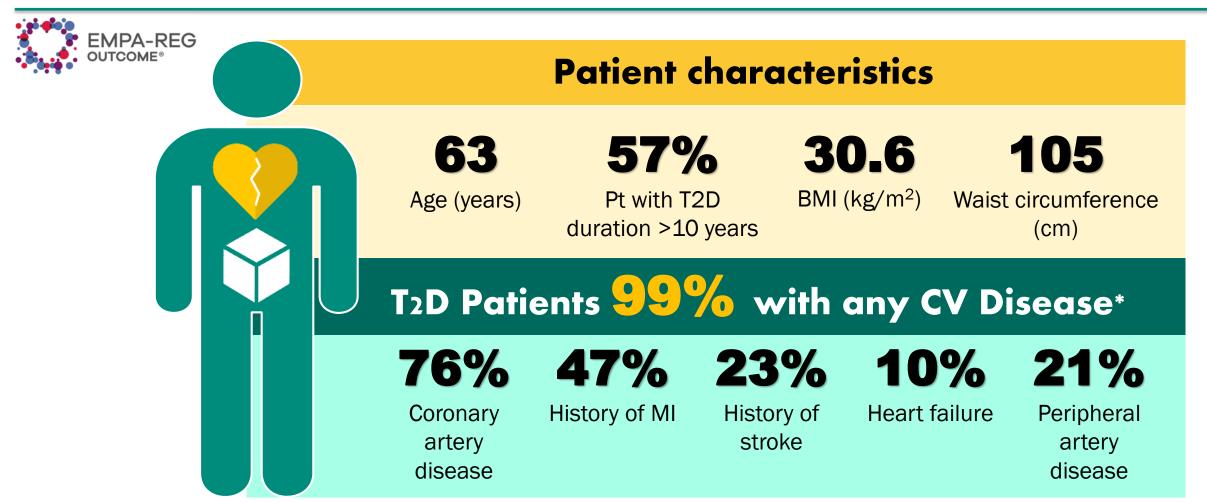
a new era in the management of T2D



EMPA-REG OUTCOME[®] was a large randomized, double-blind, placebo-controlled CV outcomes trial¹

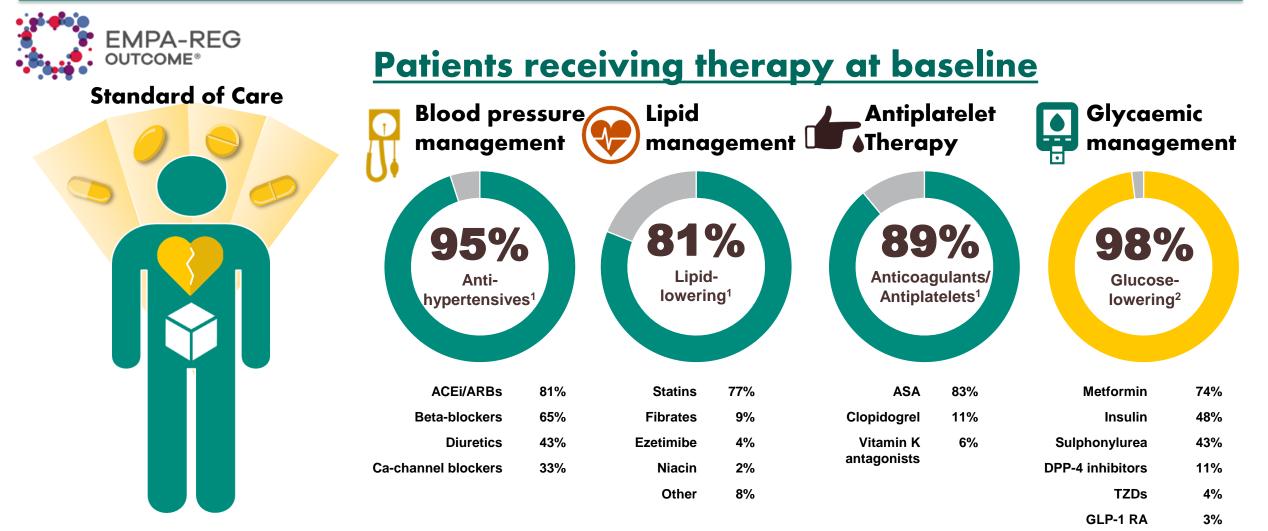
1. Zinman B et al. N Engl J Med 2015;373:2117-28.

Patients received JARDIANCE[®] or placebo on top of standard of care for CV and T2D management¹


[†]Standard of care included antihypertensives, lipid-lowering agents, anticoagulants and glucose-lowering therapies.¹

[‡]Data from both doses of JARDIANCE[®] were pooled for statistical analysis versus placebo.

[#] JARDIANCE[®] can be used be used down to an eGFR of 45 mL/min/1.73m².


1. Zinman B et al. N Engl J Med 2015;373:2117-28.

In addition to T2D, all patients had established CV disease¹

Data are mean or %. BMI, body mass index; Data are from patients treated with ≥1 dose of study drug *Established CV disease; †Placebo, n=2332; ‡Based on narrow standardised MedDRA query 'cardiac failure' CV, cardiovascular; MedDRA, Medical Dictionary for Regulatory Activities; MI, myocardial infarction 1. Zinman B *et al.* N Engl J Med 2015;373:2117–28.

JARDIANCE[®] Patients Received Standard of Care for CV Disease and Type 2 Diabetes

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ASA, acetylsalicylic acid; CV, cardiovascular; DPP-4, dipeptidyl peptidase-4; GLP-1 RA, glucagon-like peptide-1 receptor agonist; TZD, thiazolidinedione 1. Zinman B *et al.* N Engl J Med 2015;373:2117; 2. Zinman B *et al.* Cardiovasc Diabetol 2014;13:102

JARDIANCE[®]: The only oral T2D agent approved to reduce the risk of CV death

EMPA-REG

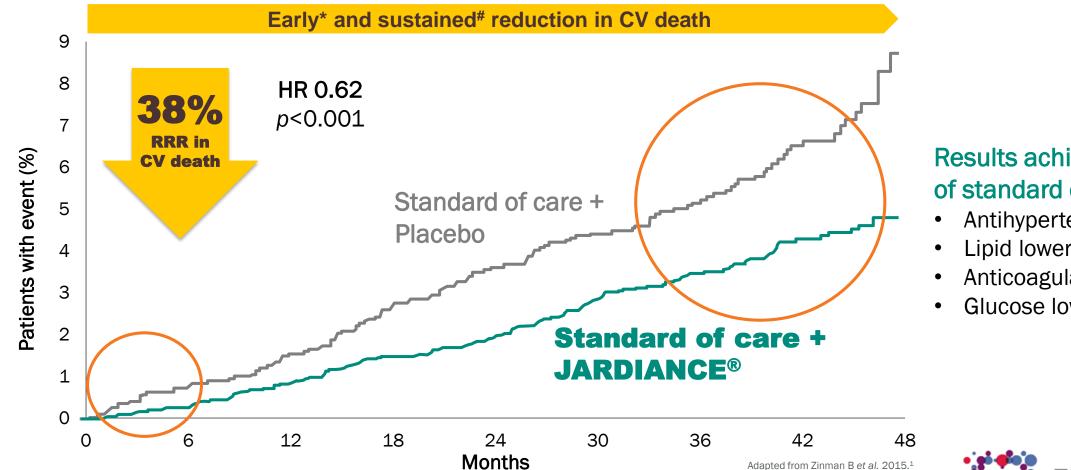
In patients with T2D and established CV disease (CAD, PAD, MI or stroke) vs placebo on top of standard of care^{1,2}

8% relative risk reduction in CV death vs placebo on top of standard of care¹ HR=0.62; P<0.001

Primary endpoint met superiority vs placebo. Primary endpoint was composite of CV death, non-fatal MI and non-fatal stroke (HR=0.86; P=0.04)

Standard of care included antihypertensives, lipid-lowering agents, anticoagulants and glucose-lowering therapies.¹

The absolute risk for CV death was 5.9% in patients receiving standard of care plus placebo and was reduced to 3.7% in patients receiving standard of care plus JARDIANCE[®] (p<0.001).¹


1. Zinman B et al. N Engl J Med 2015;373:2117-28. 2. JARDIANCE® Approved Product Information.

CV death

JARDIANCE[®] reduced the relative risk of CV death by 38%

vs placebo on top of standard of care in patients with T2D and established CV disease (CAD, PAD, MI or stroke)¹

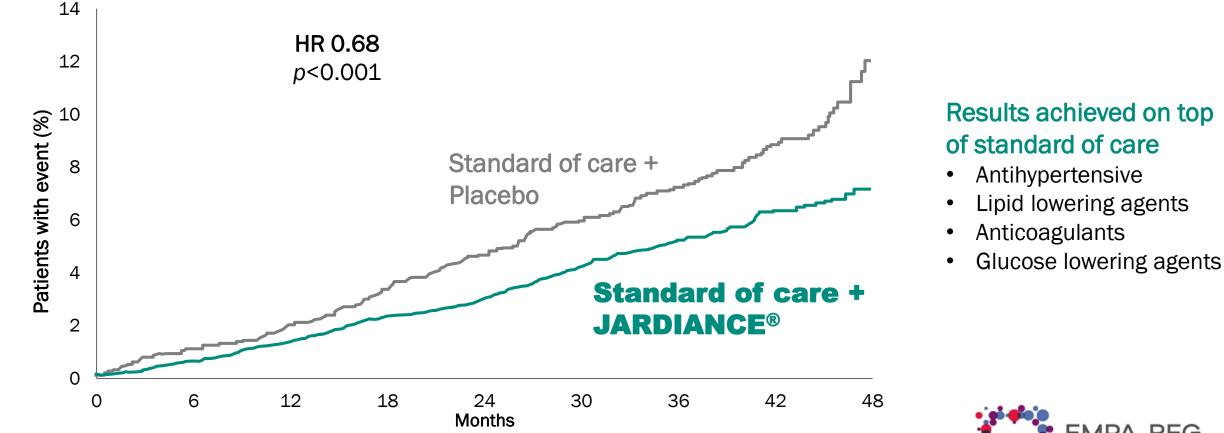
Results achieved on top of standard of care

- Antihypertensive
- Lipid lowering agents
- Anticoagulants
- **Glucose lowering agents**

*Within 6 months from start, #Up to 48 months from start,

CV death was a pre-specified secondary endpoint. Cumulative incidence function, HR, hazard ratio

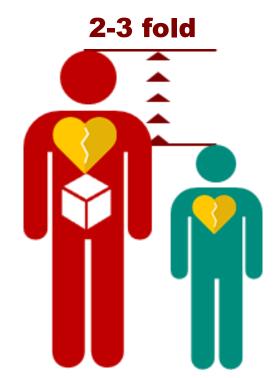
The absolute risk for CV death was 5.9% in patients receiving standard of care plus placebo and was reduced to 3.7% in patients receiving standard of care plus JARDIANCE[®] (p<0.001).¹


1. Zinman B et al. N Engl J Med 2015;373:2117-28.

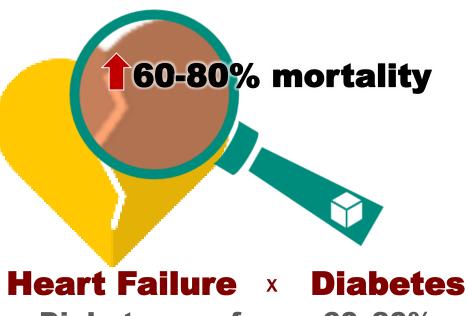
EMPA-REG OUTCOME : All-cause mortality

vs placebo on top of standard of care in patients with T2D and established CV disease (CAD, PAD, MI or stroke)¹

*Within 6 months from start. #Up to 48 months from start.


All cause mortality was a pre-specified secondary endpoint. Kaplan-Meier estimate. HR, hazard ratio

The absolute risk for all-cause mortality was 8.3% in patients receiving standard of care plus placebo and was reduced to 5.7% in patients receiving standard of care plus JARDIANCE[®] (p<0.001).¹ 1. Zinman B *et al.* N Engl J Med 2015;373:2117-28.

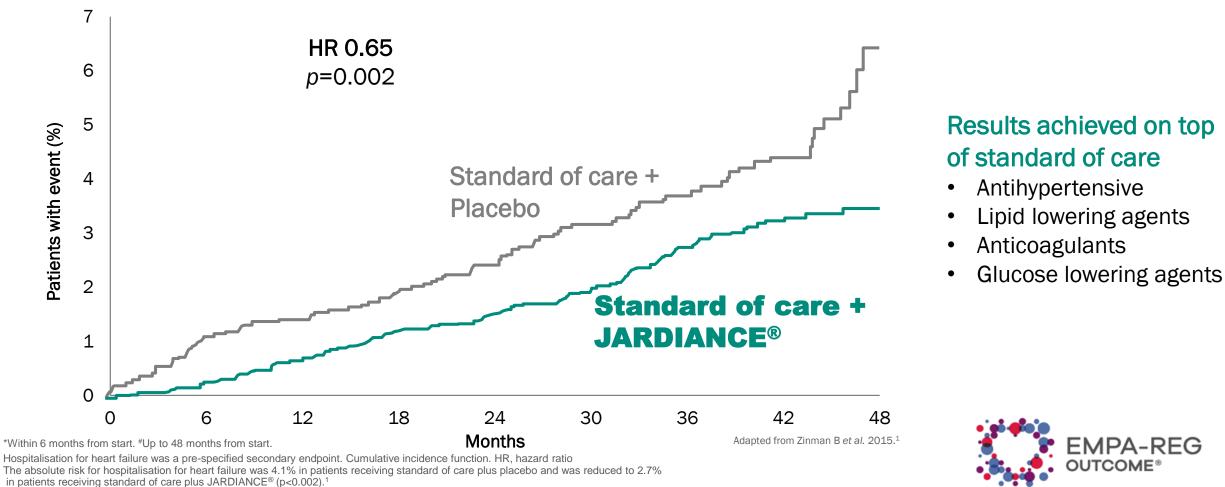


JARDIANCE® is not indicated to reduce all-cause mortality

People with T2D are at increased risk of heart failure¹⁻³

People with diabetes have a 2- to 3-fold higher risk of developing HF¹

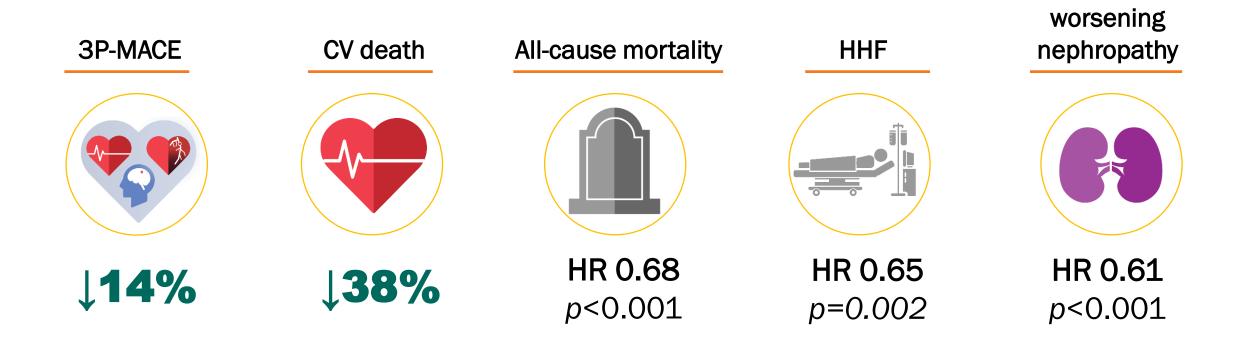
Diabetes confers a 60–80% greater probability of allcause and CV death in those with established HF²*


*Based on data from two clinical studies. HF, heart failure

1. Gilbert RE and Krum H. Lancet 2015;385:2107–17. 2. Amaral N and Okonko DO. Diab Vasc Dis Res 2015;12:239–48. 3. Cubbon RM et al. Diab Vasc Dis Res 2013;10:330–6.

<u>EMPA-REG OUTCOME :</u> <u>Hospitalization of Heart Failure</u>

vs placebo on top of standard of care in patients with T2D and established CV disease (CAD, PAD, MI or stroke)¹

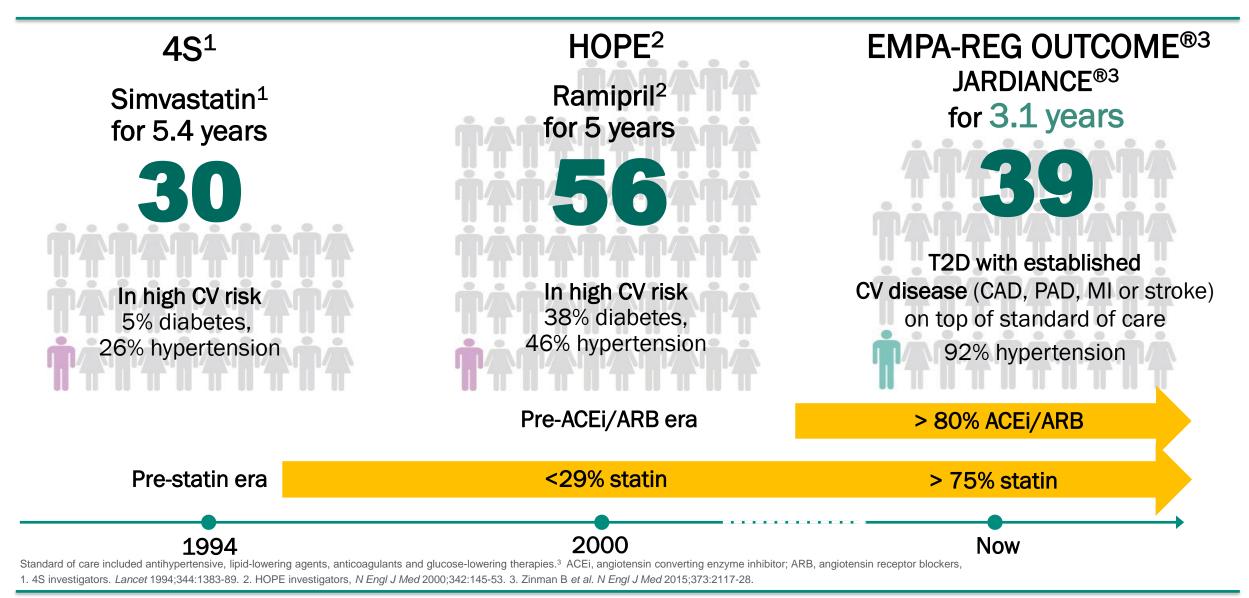


1. Zinman B et al. N Engl J Med 2015;373:2117–28.

JARDIANCE[®] is not indicated to reduce hospitalisation for heart failure

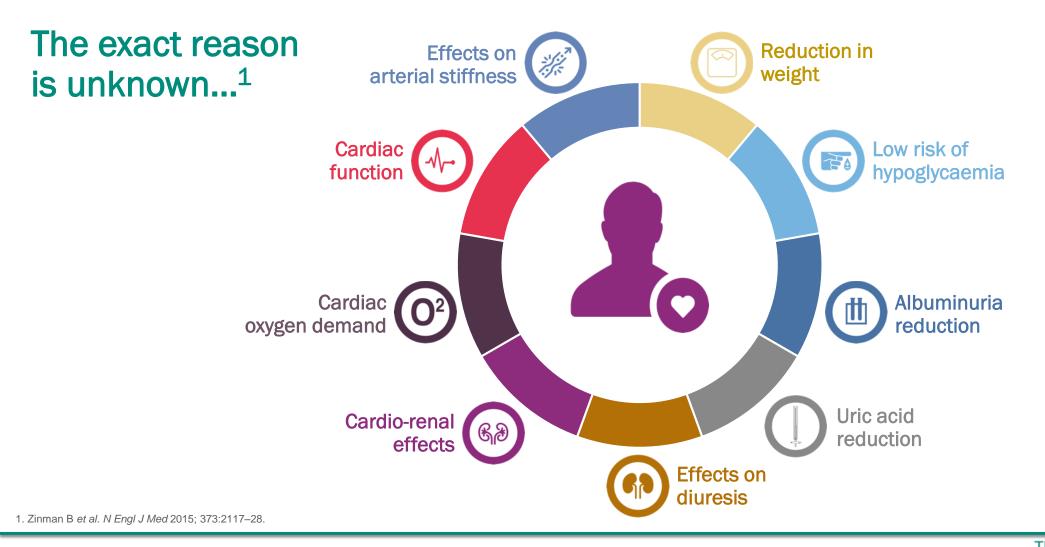
What has Jardiance done after added on to standard of care in patients with T2D x CVD ?

Relative risk reduction:

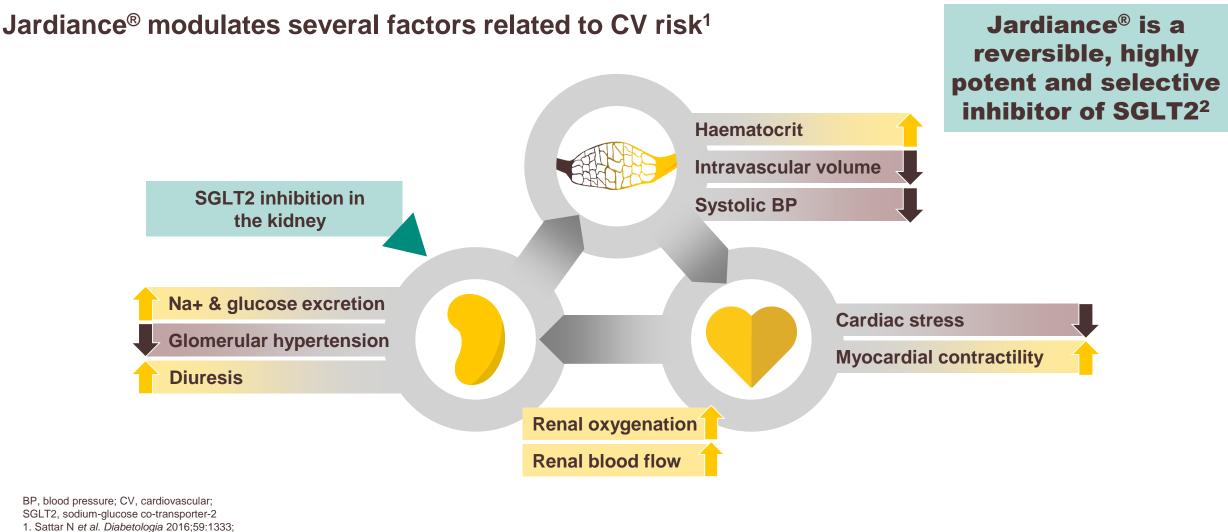


3P-MACE, 3-point major adverse cardiovascular events; CV, cardiovascular; HF, heart failure; HHF, hospitalisation for heart failure; T2D, type 2 diabetes 1. Zinman B et al. N Engl J Med 2015;373:2117; 2. Wanner C et al. N Engl J Med 2016;375:323

JARDIANCE® is not indicated to prevent all-cause mortality, HHF, and decline in renal function²

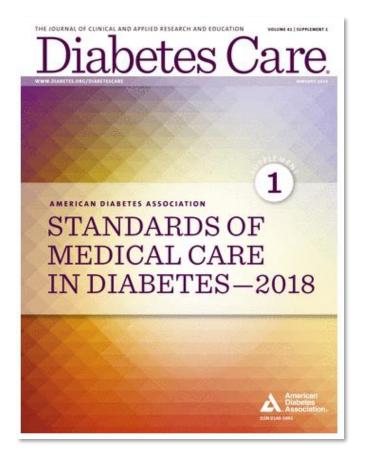

Incident or

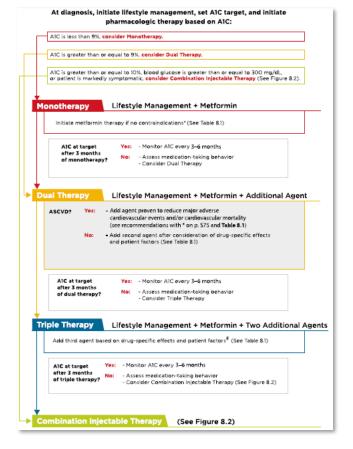
Number needed to treat (NNT) to save 1 life



What may explain the CV and renal benefits of Jardiance[®]?

These results are not explained by HbA_{1c} reduction alone¹


The mechanisms that explain the CV benefits of Jardiance[®] are likely to be multifactorial



2. Boehringer Ingelheim Jardiance[®] (empagliflozin). Prescribing Information. 2016

8. Pharmacologic Approaches to Glycemic Treatment: *Standards of Medical Care in Diabetes—2018*

Diabetes Care 2018;41(Suppl. 1):S73–S85 | https://doi.org/10.2337/dc18-S008

ADA 2018 : Standard of Medical Care in T2DM

American Diabetes Association

8. Pharmacologic Approaches to Glycemic Treatment: *Standards of Medical Care in Diabetes—2018*

Diabetes Care 2018;41(Suppl. 1):S73–S85 | https://doi.org/10.2337/dc18-S008

- For patients with ASCVD, add a second agent with evidence of cardiovascular risk reduction after consideration of drug-specific and patient factors"
- In patients with type 2 diabetes and established atherosclerotic cardiovascular disease, Antihyperglycemic therapy should begin with lifestyle management and metformin and subsequently incorporate an agent proven to reduce major adverse cardiovascular events and cardiovascular mortality (currently empagliflozin and liraglutide), after considering drug-specific and patient factors. A"

Lifestyle Management + Metformin

Initiate metformin therapy if no contraindications* (See Table 8.1)

A1C at target after 3 months of monotherapy?

Monotherapy

Yes: - Monitor A1C every 3–6 months

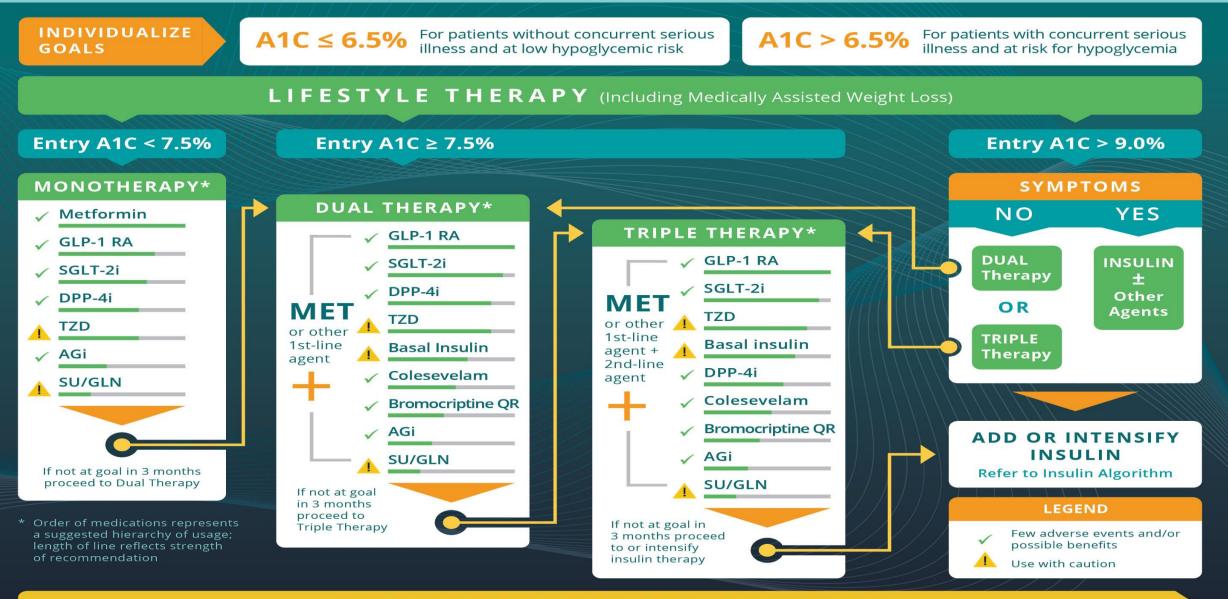
No: - Assess medication-taking behavior
 - Consider Dual Therapy

Dual Therapy Lifestyle Management + Metformin + Additional Agent

D	ual Therapy	Lifestyle Management + Metformin + Additional Agent				
	ASCVD? Yes: - Add agent proven to reduce major adverse cardiovascular events and/or cardiovascular mortality (see recommendations with * on p. S75 and Table 8.1)					
	No: - Add second agent after consideration of drug-specific effects and patient factors (See Table 8.1)					
✓ For patients with ASCVD, add a second agent with evidence						
of cardiovascular risk reduction after consideration of drug-						
specific and patient factors ^{r A1C every 3–6 months}						
✓ The empagliflozin and liraglutide trials demonstrated						
significant reductions in cardiovascular death						
Triple Therapy Lifestyle Management + Metformin + Two Additional Agent						

AACE/ACE Comprehensive Type 2 Diabetes Management Algorithm

TASK FORCE


Alan J. Garber, MD, PhD, FACE, Chair

Martin J. Abrahamson, MD Joshua I. Barzilay, MD, FACE Lawrence Blonde, MD, FACP, MACE Zachary T. Bloomgarden, MD, MACE Michael A. Bush, MD Samuel Dagogo-Jack, MD, FACE Ralph A. DeFronzo, MD Daniel Einhorn, MD, FACP, FACE Vivian A. Fonseca, MD, FACP Jeffrey R. Garber, MD, FACP, FACE W. Timothy Garvey, MD, FACE George Grunberger, MD, FACP, FACE Yehuda Handelsman, MD, FACP, FNLA, FACE Irl B. Hirsch, MD Paul S. Jellinger, MD, MACE Janet B. McGill, MD, FACE Jeffrey I. Mechanick, MD, FACP, FACE, FACN, ECNU Paul D. Rosenblit, MD, PhD, FNLA, FACE Guillermo Umpierrez, MD, FACP, FACE

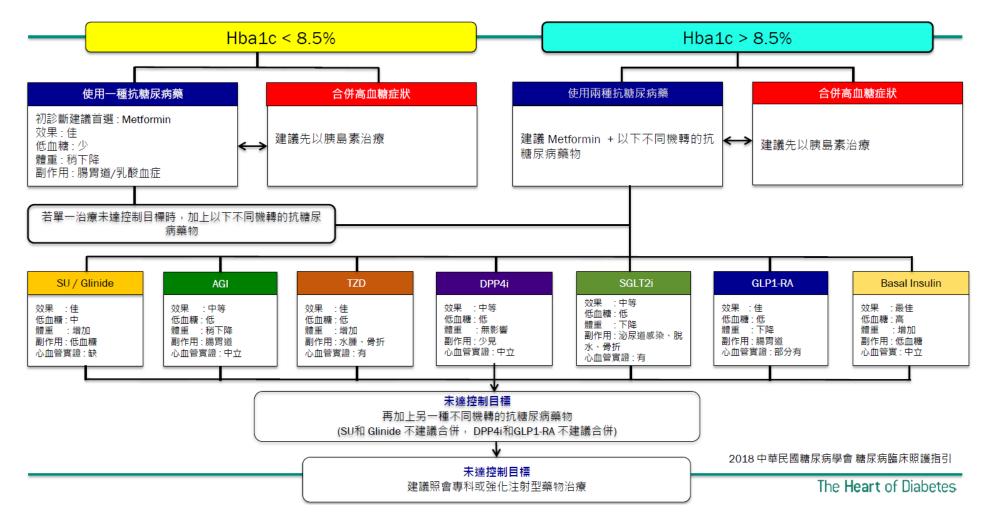
Glycemic Control Algorithm

PROGRESSION OF DISEASE

COPYRIGHT © 2018 AACE MAY NOT BE REPRODUCED IN ANY FORM WITHOUT EXPRESS WRITTEN PERMISSION FROM AACE. DOI 10.4158/CS-2017-0153

Profiles of Antidiabetic Medications

	МЕТ	GLP-1 RA	SGLT-2i	DPP-4i	AGi	TZD (moderate dose)	SU GLN	INSULIN	PRAML
НҮРО	Neutral	Neutral	Neutral	Neutral	Neutral	Neutral	Moderate/ Severe Mild	Moderate to Severe	Neutral
WEIGHT	Slight Loss	Loss	Loss	Neutral	Neutral	Gain	Gain	Gain	Loss
RENAL / GU	Contra- Indicated	Exenatide Not Indicated CrCl < 30	Not Indicated for eGFR < 45 mL/ min/1.73 m ² Genital Mycotic Infections	Dose Adjustment Necessary (Except Linagliptin) Neut Effective in Reducing Albuminuria	Neutral Neut	l Neutral More Hypo Risk	al More Hypo Risk	More Hypo Risk	Neutral
			Possible Benefit of Empagliflozin						
GI Sx	Moderate	Moderate	Neutral	Neutral	Moderate	Neutral	Neutral	Neutral	Moderate
СНЕ						Moderate	Neutral	CHF Risk	
CARDIAC ASCVD	Neutral	See #1	See #2	See #3 Neutral	May Reduce Stroke Risk	Possible ASCVD Risk	Neutral	Neutral	
BONE	Neutral	Neutral	Mild Fracture Risk	Neutral	Neutral	Moderate Fracture Risk	Neutral	Neutral	Neutral
KETOACIDOSIS	Neutral	Neutral	DKA Can Occur in Various Stress Settings	Neutral	Neutral	Neutral	Neutral	 Neutral	Neutral
Few adverse events or possible benefits Likelihood of adverse effects 1. Liraglutide—FDA approved for prevention of MACE events. Use with caution 1. Liraglutide—FDA approved for prevention of MACE events. 3. Possible increased hospitalizations for heart failure with alogliptin and saxagliptin.									


COPYRIGHT © 2018 AACE MAY NOT BE REPRODUCED IN ANY FORM WITHOUT EXPRESS WRITTEN PERMISSION FROM AACE. DOI 10.4158/CS-2017-0153

2018 中華民國糖尿病學會 糖尿病臨床照護指引

2018 中華民國糖尿病學會糖尿病臨床照護指引

第二型糖尿病人高血糖處理流程圖

中華民國糖尿病學會 The Diabetes Association of the Republic of China (Taiwan) 2018 Consensus of Taiwan Society of Cardiology and the **Diabetes Association of Republic of China on the** pharmacological management of patients with T2DM and

2018 consensus of the Taiwan Society of Cardiology and the Diabetes Association of Republic of China (Taiwan) on the pharmacological management of patients with type 2 diabetes and cardiovascular diseases

Target HbA1c	<7%			
Monotherapy	Metformin			
Dual therapy	Metformin + SGLT-2 i			
Triple therapy	Metformin + SGLT-2 i	Metformin + SGLT-2 i	Metformin + SGLT-2 i	Metformin + SGLT-2 i
	+ GLP-1 RA ^a	$+ TZD^{b}$	+ DPP-4 i	+ SU or Glinide or AGI
Insulin therapy	Basal insulin or premixed ins	ulin or basal bolus insulin, plus ora	l agents	
* +	dase inhibitor; DPP-4 i = dipeptidyl p bitor; SU = sulfonylurea; TZD = th emaglutide.	- -	lucagon-like peptide-1 receptor agon	iist; SGLT-2 i = sodium glucose

Table 3 Treatment algorithm in diabetic patients with CHD.

	*					
Target HbA1c	<7%					
Monotherapy	Metformin					
Dual therapy	Metformin $+$ TZD ^a	Metformin + SGLT-2 i	Metformin + GLP-1 RA^{b}			
Triple therapy	Metformin $+$ TZD ^a $+$ SGLT-2 i	$Metformin + TZD^a + GLP-1 RAs^b$	Metformin + SGLT-2 i + GLP-1 RAs ^b			
Insulin therapy	Basal insulin or premixed insulin or basal bolus insulin, plus oral agents					

CHD = coronary heart disease; GLP-1 RA = glucagon-like peptide-1 receptor agonist; SGLT-2 i = sodium glucose co-transporter 2 inhibitor; TZD = thiazolidinedione.

^a Pioglitazone.

^b Liraglutide and semaglutide.

2018 consensus of the Taiwan Society of Cardiology and the Diabetes Association of Republic of China (Taiwan) on the pharmacological management of patients with type 2 diabetes and cardiovascular diseases

Table 6 Treatment algorithm in diabetic patients with heart failure.						
Target HbA1c	<8%					
Monotherapy	SGLT-2 i or metformin					
Dual therapy	SGLT-2 i + metformin					
Triple therapy	SGLT-2 i + metformin	SGLT-2 $i + metformin$	SGLT-2 i + metformin	SGLT-2 i + metformin		
	+ GLP-1 RA	+ DPP-4 i (except saxa., alo., and vilda.)	+ SU or AGI	+ Glinide		
Insulin therapy	Insulin therapy Basal insulin or premixed insulin or basal bolus insulin, plus oral agents					

AGI = alpha-glucosidase inhibitor; alo = alogliptin; DPP-4 i = dipeptidyl peptidase 4 inhibitor; GLP-1 RA = glucagon-like peptide-1 receptor agonist; saxa = saxagliptin; SGLT-2 i = sodium glucose co-transporter 2 inhibitor; SU = sulfonylurea; TZD = thiazolidinedione; vilda = vildagliptin.

Table 5 Treatment algorithm in	diabetic patients with a history of stroke.		
Target HbA1c	<7%		
Monotherapy	Metformin		
Dual therapy	Metformin + TZD ^a	Metformin + GLP-1 RA ^b	Metformin + SGLT-2 i
Triple therapy	Metformin + TZD ^a + GLP-1 RA ^b	Metformin + TZD ^a + SGLT-2 i	Metformin + GLP-1 RA ^b + SGLT-2 i
Insulin therapy	Basal insulin or premixed insulin or basal	bolus insulin, plus oral agents	

DPP-4 i = dipeptidyl peptidase 4 inhibitor, GLP-1 RA = glucagon-like peptide-1 receptor agonist; SGLT-2 i = sodium glucose co-transporter 2 inhibitor, TZD = thiazolidinedione.

^a Pioglitazone.

b Liraglutide and semaglutide.

CV disease in T2D remains a clinical challenge, but we can see a sliver lining **now...**

ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker. 1. Mannucci E *et al. Diabetes Care*. 2013; 36(Suppl 2): S259-S263.